K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.

2 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)

2 tháng 12 2021

cảm ơnvui

16 tháng 1

 

a) Xét ΔAMB và ΔDMC có:

\(AM=CM\) (gt) 

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh) 

\(BM=CM\) (M là trung điểm của BC) 

\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)

b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow AB=DC\) (2 cạnh t.ứng)  

c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng) 

Mà hai góc này ở vị trí so le trong 

\(\Rightarrow AB//CD\)

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC