K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ΔEDC ta có:

M là trung điểm của ED

Q là trung điểm của EC

nên MQ là đường trung bình của ∆ EDC

⇒ MQ = 1/2 CD = 2,5 (cm) và MQ // CD

Trong  ∆ BDC ta có:

N là trung điểm của BD

P là trung điểm của BC

nên NP là đường trung bình của  ∆ BDC

⇒ NP = 1/2 CD = 2,5 (cm)

Trong  ∆ DEB ta có:

M là trung điểm của DE

N là trung điểm của DB

nên MN là đường trung bình của  ∆ DEB

⇒ MN = 1/2 BE = 2,5 (cm) và MN // BE

Trong  ∆ CEB ta có:

Q là trung điểm của CE

P là trung điểm của CB

nên QP là đường trung bình của  ∆ CEB

⇒ QP = 1/2 BE = 2,5 (cm)

Suy ra: MN = NP = PQ = QM (1)

MQ // CD hay MQ // AC

AC ⊥ AB (gt)

⇒ MQ ⊥ AB

MN // BE hay MN // AB

Suy ra: MQ ⊥ MN hay (QMN) = 90 0  (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình vuông

S M N P Q = M N 2 = 2 , 5 2 = 6 , 75   c m 2

14 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.

Vì AB // CD ⇒ ∠ (ABC) = 180 0 ⇒ A, B, E thẳng hàng

∠ (ABF) +  ∠ (DFC) =  180 0

⇒ D, F, E thẳng hàng

△ DFC = △ EFB (g.c.g)

S D F C = S E F B

Suy ra: S A B C D = S A D E

△ DFC =  △ EFB⇒ DC = BE

AE = AB + BE = AB + DC

S A D E  = 1/2 DH. AE = 1/2 DH. (AB + CD)

Vậy : S A B C D = 1/2 DH. (AB + CD)

Cho tam giác ABC cân tại A. Trung tuyến AM, lấy O là trung điểm Am. Tia BO cắt AC tại D, tia CO cắt AB tại E. Biết diện tích tam giác ADE là 5cm mét vuông. Vậy diện tích tam giác ABC là ... cm mét vuôngNghiệm nguyên của phương trình: 2x8 - 16x4 - 32x2 + 50x - 28 = 0 là x =....Cho tam giác ABC có diện tích bằng 54cm mét vuông. Trên các cạnh AB và AC lấy M và N sao cho AM=2/3.AB; AN=1/2.AC. Diện tích tam giác AMN là .... cm mét...
Đọc tiếp
  1. Cho tam giác ABC cân tại A. Trung tuyến AM, lấy O là trung điểm Am. Tia BO cắt AC tại D, tia CO cắt AB tại E. Biết diện tích tam giác ADE là 5cm mét vuông. Vậy diện tích tam giác ABC là ... cm mét vuông
  2. Nghiệm nguyên của phương trình: 2x8 - 16x4 - 32x2 + 50x - 28 = 0 là x =....
  3. Cho tam giác ABC có diện tích bằng 54cm mét vuông. Trên các cạnh AB và AC lấy M và N sao cho AM=2/3.AB; AN=1/2.AC. Diện tích tam giác AMN là .... cm mét vuông
  4. Hình thang ABCD ( AB// CD ) có 2 đường chéo AC và BD cắt nhau tại O. Gọi M,N thoe thứ tự là trung điểm của BD và AC. Biết OB=2.OM, đáy lớn CD = 16cm. Vậy đáy nhỏ AB = .... cm
  5. Một hình chữ nhật và một hình vuông có chu vi bằng nhau nhưng diện tích hình chữ nhật kém diện tích hình vuông 49cm mét vuông. Đường chéo của hình chữ nhật dài 26cm. Vậy diện tích hình chữ nhật bằng ... cm mét vuông
  6. Tìm a để phương trình |x - 4| - x = 2a có vô số nghiệm. Kết quả a là ...

 

3
9 tháng 3 2016

1:225

2:-2

10 tháng 3 2016

Đáp án câu 1: https://www.facebook.com/1676765885944421/posts/1678149982472678?page_upsell_promote=1

26 tháng 12 2017

Bạn tự vẽ hình nha ( hình nó dễ )

Gọi F là trung điểm của BC. Cắt hình thang theo đường DF đưa ghép vềnhư hình vẽ, điểm C trùng với điểm B , điểm D trùng với điểm E 

Vì AB // CD \(\Rightarrow\)\(\widehat{ABC}+180\)độ \(\Leftrightarrow\)A ; B ; E thẳng hàng

\(\widehat{ABF}+\widehat{DFC}=180\)độ

\(\Rightarrow\)D ; F ; E thẳng hàng

\(\Delta DFC=\Delta EFB\left(g-c-g\right)\)

Diện tích DFC = diện tích EFB

\(\Rightarrow\)Diện tích ABCD = diện tích ADE

\(\Delta DFC=\Delta EFB\left(cmt\right)\)

DC = BE

AE = AB + BE = AB + CD 

Diện tích ADE = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)

Vậy diện tích ABCD = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)

GV
29 tháng 4 2017

A B C D E M h N

Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.

Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)

b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.