Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:
$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$
$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$
$=1+\frac{AD}{BD}$
Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác
Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$
$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$
Ta có đpcm.
a) Xét tứ giác ABCE có
M là trung điểm của đường chéo AC(gt)
M là trung điểm của đường chéo BE(B và E đối xứng nhau qua M)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
P ở đâu ra vậy bạn? bạn viết đúng đề đi. có thể mình giúp bạn được
Giải thích các bước giải:
Do G là trọng tâm ΔABC
\(\to \frac{{GC}}{{CE}} = \frac{2}{3};\frac{{BG}}{{BD}} = \frac{2}{3}\)
Mà GM//AB; GN//AC hay GM//BE; GN//DC
Theo định lí ta-lét trong ΔCBE và BDC
\(\begin{array}{l} \to \frac{{GC}}{{CE}} = \frac{{CM}}{{CB}} = \frac{2}{3};\frac{{BG}}{{BD}} = \frac{{BN}}{{BC}} = \frac{2}{3}\\ \to \frac{{CM}}{{BC}} = \frac{{BN}}{{BC}} = \frac{2}{3} \to \frac{{BM}}{{BC}} = \frac{{CN}}{{BC}} = \frac{1}{3}\\ \to CM = BN;BM = CN\\ \to BM = MN = CN \end{array}\)
PC/PD-AC/BC
=MC/ME-AD/DB
=MA/ME-AD/DB
\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)
=1