K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

a) Xét △ACE và △BFE có:

\(\left\{{}\begin{matrix}EA=EB\left(\text{E là trung điểm của AB}\right)\\\widehat{AEC}=\widehat{FEB}\left(\text{2 góc đối đỉnh}\right)\\EC=EF\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\text{△ACE = △BFE}\left(c.g.c\right)\)

\(\Rightarrow AC=BF\left(\text{2 cạnh tương ứng}\right)\)

b) Có: △ACE = △BFE (cmt)

\(\Rightarrow\widehat{ACE}=\widehat{BFE}\left(\text{2 góc tương ứng}\right)\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AC // BF (dấu hiệu nhận biết)

c) Có AC // BF (cmt)

\(\Rightarrow\widehat{EBA}=\widehat{BAC}\left(\text{2 góc so le trong}\right)\)

Xét △ACB và △BFA có:

\(\left\{{}\begin{matrix}AC=BF\left(cmt\right)\\\widehat{EBA}=\widehat{BAC}\left(cmt\right)\\AB:\text{cạnh chung}\end{matrix}\right.\)

\(\Rightarrow\text{△ACB = △BFA}\left(c.g.c\right)\)

23 tháng 11 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ACE\)\(BFE\) có:

\(AE=BE\) (vì E là trung điểm của \(AB\))

\(\widehat{AEC}=\widehat{BEF}\) (vì 2 góc đối đỉnh)

\(CE=FE\) (vì E là trung điểm của \(CF\))

=> \(\Delta ACE=\Delta BFE\left(c-g-c\right)\)

=> \(AC=BF\) (2 cạnh tương ứng).

b) Theo câu a) ta có \(\Delta ACE=\Delta BFE.\)

=> \(\widehat{ACE}=\widehat{BFE}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BF.\)

\(AC\) // \(BF\left(cmt\right).\)

=> \(\widehat{CAB}=\widehat{FBA}\) (vì 2 góc so le trong).

c) Xét 2 \(\Delta\) \(ACB\)\(BFA\) có:

\(AC=BF\left(cmt\right)\)

\(\widehat{CAB}=\widehat{FBA}\left(cmt\right)\)

Cạnh AB chung

=> \(\Delta ABC=\Delta BFA\left(c-g-c\right)\left(đpcm\right).\)

Chúc bạn học tốt!

20 tháng 12 2021

b: Xét tứ giác AFBC có

E là trung điểm của AB

E là trung điểm của CF

Do đó: AFBC là hình bình hành

Suy ra: AC//BF

22 tháng 12 2021

haha

 

13 tháng 12 2021

a) Xét △ACE và △BFE có:

EA=EB(E là trung điểm của AB)                                                                    gócAEC=gócFEB(2 góc đối đỉnh)EC=EF(gt)

  ⇒△ACE = △BFE(c.g.c)(đpcm)

b) Có: △ACE = △BFE (cmt)

⇒gócACE=gócBFE(2 góc tương ứng)

Mà 2 góc ở vị trí so le trong

⇒ AC // BF (dấu hiệu nhận biết)

c) Có AC // BF (cmt)

⇒gócEBA=gócBAC(2 góc so le trong)

Xét △ACB và △BFA có:

                   +AC=BF(cmt)                                                                                   +gócEBA=gócBAC(cmt)                                                                                                              +ABlà cạnh chung

⇒△ACB = △BFA(c.g.c)(đpcm)

16 tháng 12 2021

a: Xét ΔAEC và ΔBEF có

EA=EB

\(\widehat{AEC}=\widehat{BEF}\)

EC=EF

Do đó: ΔAEC=ΔBEF

16 tháng 12 2021

b) Ta có:   △ AEC và △ BEF ( chứng minh trên )

Mà lại có:   \(\widehat{ACE}=\widehat{BFE}\) ( 2 góc tương ứng )

Ta lại thấy hai góc này ở vị trí so le trong 

Suy ra:  AC // BF

22 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

28 tháng 2 2021

a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)

b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC 

c) Tam giác EBC và FCB có 

EB = FC

\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)

BC chung

=> tam giác EBC = tam giác FCB (c.g.c)

d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)

=> tam giác IBC cân tại I => IB = IC

Xét tam giác AIB và AIC có

AI chung

AB =AC (gt)

IB=IC

=> tam giác AIB = AIC (c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)

=> AI là tia phân giác của \(\widehat{BAC}\) (1)

Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac

=> AM là tia pgiac của \(\widehat{BAC}\) (2)

từ 1 và 2 => A,I,M thẳng hàng

e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)

Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)

Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB

 

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC

a:

BF=2BE

=>E là trung điểm của BF

=>BE=EF

DE=1/2BE

=>DE=1/2EF
=>D là trung điểm của EF

=>DE=DF

b: Xét tứ giác CEAF có

D là trung điểm chung của CA và EF

=>CEAF là hình bình hành

=>CE=AF

1 tháng 3 2018

1, Xét tam giác ABC có : A+B+C=180 

=> ACB=180-A-B=40độ

2, Vì DE//BC nên ta có : góc ADE=DBF ( đồng vị )

Xét tam giác ADE và DBF có : 

AD=DB 

DE=BF

góc ADE=DBF

=> tam giác ADE=DBF (c.g.c)

b, vì tam giác ADE=DBF nên góc BDF=DAE ( hai góc đồng vị bằng nhau ) => DF//AC.

c, Xét tam giác ABC có : AD=BD và DF//AC => BF=FC

1 tháng 3 2018

1) A + B + C = 180 độ

C = 180 độ - ( 60 độ + 80 độ )

C = 40 độ

2)

a) Xét t/giác EDA và FBD , có

 Có góc EDA = góc FBD ( 2 đường ED // CB)

   AD = DB ( D là trung điểm của AB )

FB = ED ( gt )

=> t/giác EDA = t/giác FBD ( c.g.c )

b) Ta có: góc A = góc FDB ( t/giác EDA = t/giác FBD)

mà chúng ở vị trí so le trong => FD // EA hay FD // CA

c) bí