Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I,J,K lần lượt là trung điểm của các cạnh BC,CA,AB; các đường thẳng d1,d2 đi qua G và song song với AB,AC và cắt AC,AB tại L,H. Khi đó ta có: GL//AB=>AB/GL=BJ/GJ=3; GL//AM=>GL/AM=NG/MN. Nhân hai đẳng thức theo vế thì được AB/AM=3NG/MN (*). Một cách tương tự ta cũng chứng minh được AC/AN=3MG/MN (*). Cộng (*) và (**) theo vế thì được AB/AM+AC/AN=3(NG+MG)/MN=3.
Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F
Gọi AI là trung tuyến của \(\Delta\)ABC
Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)
Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)
\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)
\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)
\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).
Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.