Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc dtsbn:
\(2\widehat{A}=3\widehat{B};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\\ \Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+4}=\dfrac{180^0}{9}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=40^0\\\widehat{C}=80^0\end{matrix}\right.\)
Ta có: số đo 3 góc lần lượt là x;y;z
Ta có: \(\frac{15}{x}=\frac{16}{y}=\frac{18}{z}=\frac{15+16+18}{x+y+z}=\frac{49}{180}\)
Vậy số đo góc x là: \(x=\frac{15\times180}{49}=\frac{2700}{49}\)
Vậy số đo góc y là: \(y=\frac{16\times180}{49}=\frac{2880}{49}\)
Vậy số đo góc z là: \(z=\frac{18\times180}{49}=\frac{3240}{49}\)
Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí tổng 3 góc của tam giác)
Theo đề bài : \(\frac{\widehat{A}}{\frac{1}{15}}=\frac{\widehat{B}}{\frac{1}{16}}=\frac{\widehat{C}}{\frac{1}{18}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{\frac{1}{15}+\frac{1}{16}+\frac{1}{18}}=\frac{180^o}{\frac{133}{720}}\approx974\) (tính chất dãy tỉ số bằng nhau)
=> \(\widehat{A}\approx65^o\) ; \(\widehat{B}\approx61^o\) ; \(\widehat{C}\approx54^o\)
Bạn kiểm tra lại đề, thông thường số góc k lẻ vậy
vì số đo góc A;B;C lần lượt tỉ lệ nghịch với 3;4;6 nên :
3A = 4B = 6C
=> 3A/12 = 4B/12 = 6C/12
=> A/4 = B/3 = C/2
=> A+B+C/2+3+4 = A/4 = B/3 = C/2
A+B+C = 180
=> 180/9 = A/4 = B/3 = C/2
=> 20 = A/4 = B/3 = C/2
=> A = 80; B = 60; C = 40
Bài làm
Gọi số đo của ba góc A, B, C lần lượt là x, y, z
Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)
=> \(x.\frac{1}{2}.\frac{1}{30}\)= \(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)
=> \(\frac{x}{60}\)= \(\frac{y}{90}\)= \(\frac{z}{75}\)
Vì theo định lí, tổng ba góc của tam giác là 180o
=> x + y + z = 180o
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)
Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)
Vậy độ dài của góc A là 48o
độ dài của góc B là 72o
độ dài của góc C là 60o
# Chúc bạn học tốt #
1+1=
Đặt \(\widehat{B}=x;\widehat{C}=y\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(x+y=180^0-60^0=120^0\)
Vì góc B và góc C tỉ lệ nghịch với 5 và 3
=>5x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{5}\)
mà x+y=120
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{120}{8}=15\)
=>\(x=15\cdot3=45^0;y=5\cdot15=75^0\)
vậy: \(\widehat{B}=45^0;\widehat{C}=75^0\)