Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
Dễ dàng chứng minh được: \(HEAD\)là hình chữ nhật
\(\Rightarrow\)\(HE=AD=12\)
\(HD=EA=18\)
Áp dụng hệ thức lượng ta có:
\(HD^2=AD.DC\)
\(\Rightarrow\)\(DC=\frac{HD^2}{AD}\)
\(\Rightarrow\)\(DC=\frac{18^2}{12}=27\)
\(\Rightarrow\)\(AC=AD+DC=12+27=39\)
\(HE^2=BE.AE\)
\(\Rightarrow\)\(BE=\frac{HE^2}{AE}\)
\(\Rightarrow\)\(BE=\frac{12^2}{18}=8\)
\(\Rightarrow\)\(AB=BE+EA=8+18=26\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
\(S_{AEF}=\dfrac{1}{16}\cdot S_{ABC}\)
=>\(\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{16}\cdot\dfrac{1}{2}\cdot AB\cdot AC\)
=>\(AE\cdot AF=\dfrac{1}{16}\cdot AB\cdot AC\)
=>\(\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}=\dfrac{1}{16}\cdot AB\cdot AC\)
=>\(AH^4=\dfrac{1}{16}\cdot AB^2\cdot AC^2\)
=>\(AH^2=\dfrac{1}{4}\cdot AB\cdot AC=\dfrac{1}{4}\cdot AH\cdot BC\)
=>\(AH=\dfrac{1}{4}\cdot BC\)
Gọi M là trung điểm của BC
=>AH vuông góc HM tại H
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{1}{2}BC\)=MB=MC
=>\(\dfrac{AH}{AM}=\dfrac{1}{2}\) và ΔMAC cân tại M
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{1}{2}\)
=>\(\widehat{AMB}=30^0\)
=>\(\widehat{AMC}=150^0\)
ΔMAC cân tại M
=>\(\widehat{MCA}=\dfrac{180^0-\widehat{AMC}}{2}=15^0\)
=>\(\widehat{ACB}=15^0\)
AC=căn 10^2-8^2=6cm
AH=6*8/10=4,8cm
AE=AH^2/AB=4,8^2/8=2,88cm
AF=AH^2/AC=4,8^2/6=3,84cm
S AEF=1/2*2,88*3,84=5,5296cm2
S ABC=1/2*6*8=24cm2
=>S BEFC=24-5,5296=18,4704cm2
Cho tam giác ABC vuông tại A , đường cao AH (H thuộc BC)
a) Tính BH , AH biết AB =20cm , BC= 25cm
b) Từ B kẻ đường thẳng vuông góc với đường trung tuyến AD của tam giác AD của tam giác ABC tại E cắt Ac tại F . Chứng minh : tam giác BHF đồng dạng với tam giác BEC
giải giúp em với ạ
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật