K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a, C/m ∆ AMK = ∆ AMH

Xét∆ AMK và ∆ AMH có:

Góc AMK = góc AMH = 90°

AM chung

Góc MAK = góc MAH (gt)

➡️∆ AMK = ∆ AMH (ch-gn)

b, ✳️ C/m AM vuông góc với QCX

Gọi giao điểm của AM và QC là P.

Xét ∆AQC có: CH vuông góc với AQ

                         QK vuông góc với AC

                         mà M là giao điểm của CH và QK

➡️M là trực tâm của ∆ AQC

➡️AP vuông góc với QC (đpcm)

✳️ C/m HK // QC

Xét ∆ AMK = ∆ AMH (cmt)

➡️AK = AH (2 cạnh t/ư)

Nối H với K, gọi giao điểm của AM và HK là D.

Xét ∆ AHK cân tại A (AK = AH)

➡️AD là phân giác đồng thời là đg cao

➡️AD vuông góc với HK

Ta có: AP vuông góc với HK (cmt)

           AP vuông góc với QC (cmt)

➡️HK // QC (quan hệ từ vuông góc đến song song)

c, So sánh MC và QC

Xét ∆ MKC có góc K = 90°

➡️Góc KMC là góc nhọn

mà góc QMC là góc kề bù với góc KMC

➡️Góc QMC tù

Xét ∆ QMC có góc QMC tù

 ➡️QC là cạnh lớn nhất

➡️QC > MC ( quan hệ giữa góc và cạnh đối diện)

còn câu d để mk nghĩ chút đã

2 tháng 7 2018

GIÚP MÌNH VỚI CÁC BẠN

a: Xét ΔAMK vuông tại K và ΔAMH vuông tại H có

AM chung

góc MAK=góc MAH

=>ΔAMK=ΔAMH

b: Xét ΔAKQ vuông tại K và ΔAHC vuông tại H có

AK=AH

góc KAQ chung

=>ΔAKQ=ΔAHC

=>AQ=AC

Xét ΔAQC có AH/AQ=AK/AC

nên HK//CQ

Xet ΔCAG có

CH,QK là đường cao

CH cắt QK tại M

=>M là trực tâm

=>AM vuônggóc CQ

c: góc CMQ>90 độ

=>MC<QC

a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: AH=AK và MH=MK

Xét ΔABM có \(\widehat{BAM}=\widehat{BMA}\)

nên ΔBAM cân tại B

hay BA=BM

b: Xét ΔMHI vuông tại H và ΔMKC vuông tại K có

MH=MK

\(\widehat{HMI}=\widehat{KMC}\)

Do đó: ΔMHI=ΔMKC

Suy ra: HI=KC

Ta có: AH+HI=AI

AK+KC=AC

mà AH=AK

và HI=KC

nên AI=AC

=>ΔAIC cân tại A

mà AM là đường phân giác

nên AM là đường cao

a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: AH=AK và MH=MK

Xét ΔABM có \(\widehat{BAM}=\widehat{BMA}\)

nên ΔBAM cân tại B

hay BA=BM

b: Xét ΔMHI vuông tại H và ΔMKC vuông tại K có

MH=MK

\(\widehat{HMI}=\widehat{KMC}\)

Do đó: ΔMHI=ΔMKC

Suy ra: HI=KC

Ta có: AH+HI=AI

AK+KC=AC

mà AH=AK

và HI=KC

nên AI=AC

=>ΔAIC cân tại A

mà AM là đường phân giác

nên AM là đường cao

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

16 tháng 2 2017

XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ

AB=AC(GT)

AH CHUNG

GÓC AHB = GÓC AHC

=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)

C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ

AH CHUNG

GÓC AEH=GÓC AFH =90*

A1=A2

=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)

=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H