Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bài tương tự câu bạn hỏi , kham khảo nhé !
AH cắt DE tại F
Trên tia đối HA lấy N sao cho HA = HN
Ta có : AN cắt BC tại H
Mà H là trung điểm của AN và BC
\Rightarrow Tứ giác ACNB là hình bình hành
\Rightarrow AB // CN và CN = AB = AD
Ta có : ˆDAE+ˆEAC+ˆDAB+ˆBAC=360oDAE^+EAC^+DAB^+BAC^=360o
\Rightarrow ˆDAE+ˆBAC=360o−ˆEAC−ˆDAB=360o−90o−90o=180oDAE^+BAC^=360o−EAC^−DAB^=360o−90o−90o=180o
Mà ˆACN+ˆBAC=180oACN^+BAC^=180o ( trong cùng phía )
\Rightarrow ˆDAE=ˆACNDAE^=ACN^
Xét △△ DAE và △△ NCA có :
AE = AC
Kẻ AH cắt DE tại F
Trên tia đối HA lấy N sao cho HA = HN
Ta có : AN cắt BC tại H
Mà H là trung điểm của AN và BC
=> Tứ giác ACNB là hình bình hành
=> AB // CN và CN = AB = AD
Ta có : góc DAE + góc EAC + góc DAB + góc BAC
= 360*.gócDAE + góc EAC + góc DAB + góc BAC = 360*
=> góc DAE + góc BAC = 360* - góc EAC - góc DAB
= 360* - 90* - 90*
= 180*.góc DAE + góc BAC
= 360* - góc EAC - góc DAB
= 360* - 90* - 90* 180*
Mà góc ACN + góc BAC = 180*. góc ACN + góc BAC = 180* (góc trong cùng phía )
=> góc DAE = góc ACN + góc DAE = góc ACN
Xét ΔDAE và ΔNCA có:
AE = AC
góc DAE = góc ACN
AD = CN
=> Vậy ΔDAE = ΔNCA (c.g.c)
Ta có: góc FAE + góc EAC + góc CAH = 180*
<=> góc FAE + góc CAH = 180* - góc EAC
= 180* − 90* = 90*
Mà góc CAH = góc FEA ( vì ΔDAE = ΔNCA)
góc FAE + góc FEA = 90*
=> ΔAEF ⊥ tại F
=> AH ⊥ DE (đpcm)
k mik nhé
\(\sqrt{\sqrt[]{}\frac{ }{ }\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}^{ }\orbr{\begin{cases}\\\end{cases}}_{ }_{ }^2\widehat{ }\widebat{ }\overline{ }\overrightarrow{ }^{ }_{ }\underrightarrow{ }|^{ }_{ }\cot\sin\cos\tan\sinh\cosh\tanh\Leftrightarrow}\)