Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có góc A + góc B = 90o . Từ C kẻ CH vuông góc với AB. Chứng minh góc HAC = góc BCH.
Xét tam giác ABC có: góc A + góc B + góc C = 1800 ( tổng 3 góc trong một tam giác)
=> góc C = 1800 - ( góc A + góc B) = 180 - 90 = 900
=> góc C = góc ACH + góc BCH = 900 (1)
xét tam giác AHC có góc AHC = 900
=> góc HAC + góc ACH = 1800 - góc AHC = 180 - 90 = 900 (2)
từ (1) và (2) suy ra
góc HAC = góc BCH ( vì cùng phụ với góc ACH)
Điều phải chứng minh
a: Xét ΔAMK vuông tại K và ΔAMH vuông tại H có
AM chung
góc MAK=góc MAH
=>ΔAMK=ΔAMH
b: Xét ΔAKQ vuông tại K và ΔAHC vuông tại H có
AK=AH
góc KAQ chung
=>ΔAKQ=ΔAHC
=>AQ=AC
Xét ΔAQC có AH/AQ=AK/AC
nên HK//CQ
Xet ΔCAG có
CH,QK là đường cao
CH cắt QK tại M
=>M là trực tâm
=>AM vuônggóc CQ
c: góc CMQ>90 độ
=>MC<QC
Cho tam giác ABC có A - B = 90o. Từ C kẻ CH vuông góc với tia BA. Chứng minh rằng: góc HAC = góc BCH
Có góc BAC - góc B = 90 độ(gt)
=> góc BAC = 90 độ + góc B
Có góc BAC + góc HAC = 180 độ (2 góc kề bù)
=> góc HAC = 180 độ - góc BAC
mà góc BAC = 90 độ +góc B
=> góc HAC = 180 độ - ( 90 độ + góc B)= 90 độ -góc B(1)
Xét tam giác BHC vuông tại H ( CH vuông góc vs BA ) có
góc B + góc BCH = 90 độ (t/c tam giác vuông)
=> góc BCH = 90 độ - góc B (2)
từ (1) và (2) => góc HAC = góc BCH
vậy góc HAC = góc BCH
TAm giác ABC vuông tại A => ABC + C = 90 độ (1)
TAm giác AHC vuông tại H => HAC + C = 90độ (2)
Từ (1) và (2) => ABC = HAC (3)
Ta có OBA = 1/2 ABC ( BO là phâ n giác ) (4)
Từ (3) và (4) => OBA = 1/2 HAC
OAH = 1/2 HAC ( AO là phân giác)
=>ABO + OAB = 1/2 . HAC + OAH + HAB = 1/2 .HAC + 1/2 .HAC + HAB = HAC + HAB = BAC = 90 độ ( TAm giác ABC vuông tại A )
TAm giác OAB có OBA + OAB = 90 độ => AOB = 90 độ
=> ĐPCM
Gọi BO giao với AH tại K
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)(1)
Tam giác AHC có \(\widehat{H}=90^o\)
\(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)(2)
Từ (1) và (2) => \(\widehat{B}=\widehat{HAC}\)
\(\Rightarrow\widehat{HBO}=\widehat{HAO}\)
lại có \(\hept{\begin{cases}\widehat{HBO}+\widehat{BKH}=90^o\\\widehat{HAO}+\widehat{AKO}=\widehat{HBO}+\widehat{BKH}\end{cases}}\)( vì góc BKH và góc AKO bằng nhau 2 góc đối đỉnh )
\(\Rightarrow\widehat{HAO}+\widehat{AKO}=90^o\)
\(\Rightarrow\widehat{AOB}=90^o\)