Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vẽ DI,EK vuông góc AH
Xét ΔIDA và ΔHAB có
góc DIA=góc AHB
AD=AB
góc A1=góc ABH(=90 độ-góc A2)
=>ΔIDA=ΔHAB
=>ID=AH(1)
Xét ΔKAE và ΔHCA có
góc EKA=góc AHC
AE=AC
góc EAK=góc HCA
=>ΔKAE=ΔHCA
=>AH=EK=DI
Gọi giao của AH và DE là N
Xét ΔDIN và ΔKEN co
góc DIN=góc EKN
DI=EK
góc ENK=góc DNK
=>ΔDIN=ΔKEN
=>EN=DN
=>N là trung điểm của DE
b: Lấy F đối xứng A qua M
Xet ΔAMB và ΔFMC có
MA=MF
góc AMB=góc FMC
MB=MC
=>ΔAMB=ΔFMC
=>AB=CF và góc B=góc FCM
=>góc ACF=góc ACB+góc B=180 độ-góc BAC
Gọi giao của AM và DE là I
Xet ΔACF và ΔEAD có
AC=ED
CF=AD
góc EAD=góc ACF
=>ΔACF=ΔEAD
=>AF=DE
=>AM=1/2DE
ΔAMB=ΔFMC
=>góc BAM=góc MFC
ΔACF=ΔEAD
=>góc MFC=góc EDA
=>góc BAM=góc EDA
=>góc EDA+góc DAI=90 độ
=>AM vuông góc DE
BẠN TỰ VẼ HÌNH NHA
A)TG DAB VUÔNG CÂN TAI SUY RA DA=AB VÀ DAB=90 ĐỘ
TG EAC VUÔNG TẠI A SUY RA AE=AC VÀ EAC=90 ĐỘ
TA CÓ DAC+BAC=90+BAC=DAC
VÀ EAC+BAC=90+BAC=BAE
TỪ 2 ĐIỀU TRÊN SUY RA DAC=BAE
TG DAC VÀ TG BAE CÓ
DA=AB
DAC=BAE
AC=AE
SUY RA TG DAC=TG BAE (C G C) SUY RA DC=BE VÀ ADC=ABE
GỌI T LÀ GIAO ĐIỂM CỦA DC VÀ BE
TA CÓ ADC+CDB+DBA=90(TG DAB VUÔNG TẠI A)
ABE+CDB+DBA=90
DBT+CDB=90 SUYRA DTE=90 ĐỘ(DO DTE=DBT+CDB)
SUY RA DC VUÔNG GÓC VỚI BE TẢI T
B)TA CÓ
TG MNE=AND(C G C) SUY RA ME=AD MÀ AD=AB(TG DAB VUÔNG CÂN TẠI A) SUY RA ME =AB
TG MNE=AND SUY RA GÓC MEN=ADN
TA CÓ ADN+AED=90 (TG DAE VUÔNG TẠI A)
TỪ 2 DÒNG TRÊN SUY RA MEN+AED=90 NÊN MEA=90 ĐỘ
CMĐ TG ABC=EMA(MDO ME=AB,MEA=BAC=90,EA=AC)(C G C) SUY RA GÓC MAE=BCA
C)GỌI I LÀ GIAO ĐIỂM CỦA MA VÀ BC
TA CÓ MAE+EAC+IAC=180 MÀ EAC=90 ĐỘ SUY RA MAE+IAC=90
MÀ MAE=BCA
TỪ 2 DÒNG TRÊN SUY RA BCA+IAC=90
MÀ IAC+BCA=AIB(GÓC NGOÀI CỦA TG AIC VUÔNG TẠI I)
TỪ 2 ĐIỀU TRÊN SUY RA AIB=90 ĐỘ SUY RA MA VUÔNG GÓC VỚI BC TẠI I
CHỖ NÀO BN KO HIỂU THÌ CỨ HỎI MÌNH NHA
Gọi O là giao điểm DC và BE, I là giao điểm DC và AB
Ta có
góc DAB= góc EAC (=90)
góc BAC= góc BAC( góc chung)
-> góc DAB+ góc BAC= góc EAC+ góc BAC
-> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE ta có
AD=AB ( tam giác ABD vuông cân tại A)
AC=AE ( tam giác AEC vuông cân tại A)
góc DAC=góc BAE ( cmt)
-. tam giac DAC= tam giac BAE (c-g-c)
-> góc DAI= góc IBO ( 2 góc tương ứng)
ta có
góc DAI+ góc DIA=90 ( tam giác DAI vuông tại A)
góc DAI= góc IBO (cmt)
góc DIA= góc BIO ( 2 góc đối đỉnh)
--> góc BIO+góc IBO =90
Xét tam giác BIO ta có
góc BIO + góc IBO + góc BIO=180 ( tổng 3 góc trong tam giác)
90+ goc BIO=180
góc BIO=180-90=90
=> BE vuông góc DC tại O
Xét tam giác DBC ta có
M là trung điểm BD (gt)
P là trung điểm BC (gt)
-> MP la đường trung bình tam giác DBC
-> MP// DC và MP=1/2 DC
cmtt PN là đường trung bình tam giác BEC
-> PN//BE và PN=1/2BE
ta có
DC vuông góc BE tại O (cmt)
DC//MP (cmt)
-> MP vuông góc BE
mà BE// PN (cmt)
nên MP vuông góc PN tại P
--> tam giác MNP vuông tại P (1)
ta có
MP=1/2 DC (cmt)
PN=1/2BE (cmt)
DC=BE ( tam giac DAC = tam giac BAE)
--> MP=PN (2)
từ (1) và (2) suy ra tam giac MNP vuông cân tại P