Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\) (theo đl pytago)
=>\(BC^2=3^2+4^2=9+16=25\)
=>BC=5
Có: AM=BM(gt)
AN=CN(gt)
=>MN là đường trung bình của ΔABC
=>\(MN=\frac{1}{2}BC=\frac{1}{2}\cdot5=2,5\)
Vậy MN=2,5
- Cho tam giác ABC có A=90 ,AB=3 cm ,AC=4 cm.Gọi M,N lần lượt là trung điểm của AB,AC .Khi đó MN=...cm
Xét ΔABC vuông tại A(gt)
=> \(BC^2=AB^2+AC^2\) ( theo định lí pytago)
=> \(BC^2=3^2+4^2=9+16=25\)
=>BC=5 (cm)
Xét ΔABC có: AM=BM(gt)
AN=NC(gt)
=>MN là đường trung bình của ΔABC
=> \(MN=\frac{1}{2}BC=\frac{1}{2}\cdot5=2,5\left(cm\right)\)
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
Ta có:
M là trung điểm AB
N là trung điểm AC
⇒ MN là đường trung bình cùa tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}BC\Rightarrow BC=2\cdot MN=2\cdot5=10\left(cm\right)\)
Xét tam giác ABC vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN=BC/2=2,5(cm)
a) Diện tích của tam giác ABC là:
\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)
b) Ta có: N là trung điểm của AB
M là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//AC\)
Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)
Suy ra: \(MN\perp AB\)
c) Trong tứ giác AMBP:
Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)
=> Tứ giác AMBP là hình bình hành
Mà \(MN\perp AB\) (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)
=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)
Bạn vô câu hỏi tương tự nha , ở đó có cả phần a và phần b
Bài đó được giáo viên giải đấy
Chắc 100% lun !!!