Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác AIBAIB và tam giác CIDCID có:
IA=ICIA=IC ( gt )
Góc CIDCID = Góc AIBAIB (ĐỐI ĐỈNH)
ID=IBID=IB ( gt )
⇒Tam giác AIBAIB = Tam giác CIDCID
b.Ta có Tam giác ABIABI = tam giác CDICDI
nên khoảng cách trung tuyến của MIMI và NINI đều bằng nhau.
⇒ II là trung điểm của đoạn MN.MN.
c.Xét góc AIBAIB và góc BICBIC ta có:
IA<ICIA<IC ( gt )
Góc BICBIC > Góc AIBAIB
IC>IBIC>IB ( gt )
⇒Góc AIBAIB < góc BICBIC
d.Điều kiện : Góc AA = 90o
a: Xét ΔAIB và ΔCID có
IA=IC
\(\widehat{AIB}=\widehat{CID}\)
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm của AC
I là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
c: Xét tứ giác AFCE có
AF//CE
AF=CE
Do đó: AFCE là hình bình hành
Suy ra: Hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường
hay IE=IF
a) Xét ΔAIB và ΔCID có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔAIB=ΔCID(c-g-c)
b) Xét ΔAID và ΔCIB có
IA=IC(I là trung điểm của AC)
\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)
ID=IB(gt)
Do đó: ΔAID=ΔCIB(c-g-c)
Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)
mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)