Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(ABC\) vuông tại \(A\)\(\Rightarrow\)\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC=\)\(\sqrt{AB^2+AC^2}\) \(=\)\(\sqrt{80^2+60^2}\)\(=100^2\)\(\Rightarrow\)\(BC=100cm\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{60^2}+\dfrac{1}{80^2}=\dfrac{1}{48^2}\Rightarrow AH=48\)
\(AI\) là tia phân giác của góc \(BAC\)\(\Rightarrow\)\(\dfrac{BI}{\text{CI }}=\dfrac{AB}{AC}=\dfrac{80}{60}=\dfrac{4}{3}\Rightarrow BI=\dfrac{4}{3}CI\)
Mà \(BI+CI=BC=100\)
\(\Rightarrow\)\(\dfrac{4}{3}CI+CI=100\Leftrightarrow\dfrac{7}{3}CI=\dfrac{300}{7}\)
\(\Rightarrow\)\(BI=BC-CI=100-\)\(\dfrac{300}{7}=\dfrac{400}{7}\)
b) Ta có Góc \(ACH + CAH = 90^o\)
Góc \(CAH + HAM = 90^o\)
\(\Rightarrow\)\(ACH=HAM\)
Xét \(Δ MAH\) và \(ΔNCH,\) có :
\(CHN=AHM(=45^o)\)
\(ACH=HAM\)
\(\Rightarrow\)\(ΔMAH\) đồng dạng vs \(ΔNCH\)
\(\Rightarrow\)\(\dfrac{CN}{AM}=\dfrac{CH}{AH}\)
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng vơi ΔBHA
b: BH=15^2/25=9(cm)
c: EH/EB=AH/AB=AC/BC
=>EH*BC=EB*AC
a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)
ADlà phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có
góc HAB=góc ECD
=>ΔABH đồng dạng với ΔCDE