Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: AH=8*6/10=4,8cm
HB=6^2/10=3,6cm
CH=10-3,6=6,4cm
S AHB=1/2*4,8*3,6=8,64cm2
S AHC=1/2*4,8*6,4=15,36cm2
a: Xét ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(AD=\dfrac{2\cdot15\cdot20}{15+20}\cdot cos45=\dfrac{60}{7}\sqrt{2}\)(cm)
AH=15*20/25=12(cm)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{12}{7}\left(cm\right)\)
c: ΔABI vuông tại A có AK là đường cao
nên BK*BI=BA^2=BH*BC
=>BK/BC=BH/BI
=>ΔBKH đồng dạng với ΔBCI
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a) Sử dụng định lí Pita go tính đc BC=10 cm
Vì AD là phân giác góc A , D thuộc Bc nên ta có:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)
b) Xét tam giác AHB và tam giác CHA
có: \(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)
=> tam giác ABH đồng dạng tam giác CHA
c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)
Xét tam giác AHB vuông và tam giác AHC vuông
Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)
\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)
\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2=AM*AB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HF là đường cao
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
hay AF/AC=AE/AB
Xét ΔAFE vuông tại A và ΔACB vuông tại A có
AF/AC=AE/AB
Do đó:ΔAFE\(\sim\)ΔACB
a) Gọi x(cm) là độ dài cạnh DB
Áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A, ta có:
BC2= AB2 + AC2= 82 + 62= 100
=>BC=\(\sqrt{100}\)=10(cm)
Xét tam giác ABC, ta có:
AD là tia phân giác góc A
=> \(\frac{DB}{AB}=\frac{DC}{AC}hay\frac{x}{8}=\frac{10-x}{6}\)
=> 6x = 8(10-x)
<=>6x=80-8x
<=>6x + 8x=80
<=> 14x=80
<=> x= 5,72(cm)
Vậy DB= 5,72 cm
DC= 10 - 5,72= 4,28 (cm)
a. tam giác ABC có góc A = 90 độ nên
BC^2=AB^2+AC^2
=8^2+6^2=100
=>BC =10
áp dụng tính chất dãy tỉ số bằng nhau ta có :
BD/AB=DC/AC =BD+DC/AB+AC=10/14=5/7
=>BD/AB=5/7=>BD=8*5:7=40/7
=>DC/Ac=5/7=>DC=6*5/7=30/7
a, CM: \(\Delta AHB\)đồng dạng voi\(\Delta CAB\)
- Vì \(AH\perp BC\Rightarrow\widehat{AHB=90^o}\)
- Xét \(\Delta AHB\)và \(\Delta CAB\)có:
\(\widehat{AHB}=\widehat{BAC}\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta AHB\)đồng dạng voi \(\Delta CAB\)(g-g) (đpcm)
b, CM: \(AC^2=CH.BC\)
- Xét \(\Delta AHC\)và \(\Delta BAC\)có:
\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{C}\)chung
\(\Rightarrow\Delta AHC\)đòng dạng với\(\Delta BAC\)(g-g)
\(\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)
\(\Leftrightarrow AC^2=CH.BC\left(đpcm\right)\)