Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
Cm: a) Xét t/giác ABH và t/giác EBH
có: \(\widehat{ABH}=\widehat{EBH}\) (gt)
BH : chung
\(\widehat{BHA}=\widehat{BHE}=90^0\) (gt)
=> t/giác ABH = t/giác EBH (g.c.g)
=> AB = EB (2 cạnh t/ứng)
=> t/giác ABE cân tại B
mà \(\widehat{B}=60^0\)
=> t/giác ABE đều
b) Ta có: t/giác ABH = t/giác EBH (cmt)
=> AH = HE (2 cạnh t/ứng)
=> H là trung điểm của AE
Xét t/giác AHD và t/giác EHD
có: AH = EH (gt)
HD : chung
\(\widehat{AHD}=\widehat{EHA}=90^0\) (gt)
=> t/giác AHD = t/giác EHD (c.g.c)
=> AD = DE (2 cạnh t/ứng)
=> t/giác ADE cân tại D