Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=180^0-\left(B+C\right)=70^0\)
\(\Rightarrow A=B\Rightarrow\Delta ABC\) cân tại C
\(\Rightarrow BC=AC=10\left(cm\right)\)
Kẻ đường cao CH \(\Rightarrow\) H đồng thời là trung điểm AB
Trong tam giác vuông ACH:
\(cosA=\dfrac{AH}{AC}\Rightarrow AH=AC.cosA=10.cos70^0\approx3,42\left(cm\right)\)
\(AB=2AH\approx6,84\left(cm\right)\)
b. Cũng trong tam giác vuông ACH:
\(sinA=\dfrac{CH}{AC}\Rightarrow CH=AC.sinA=10.sin70^0\approx9,4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}CH.AB\approx32,15\left(cm^2\right)\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC:
\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)
\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)
Pitago tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ACH:
\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)
Tiếp tục là hệ thức lượng:
\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)
\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)
:>>>>>>>>>