K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

ai giúp tớ với 

29 tháng 10 2020

a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)

b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.

17 tháng 9 2018

a) Ta có: 

ˆABD=ˆCBD=\(\frac{\widehat{ABC}}{2}\)=120: 2=60

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60(so le trong)

ˆCBD=ˆAEB=60 (đồng vị)

Suy ra tam giác ABE  đều 

⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

\(\frac{BC}{CE}\)=\(\frac{DC}{AE}\)⇒BD=\(\frac{BC.AE}{CE}\)=\(\frac{12.6}{18}\)=4(cm)

b) Ta có: 

MB=MC=\(\frac{1}{2}\).BC=\(\frac{1}{2}\).12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM

tk mik nha

31 tháng 7 2020

C M B E D A

a) Ta có: 

\(\widehat{ABD}=\widehat{CBD}=\frac{\widehat{ABC}}{2}=\frac{120^o}{2}=60^o\)

Từ A kẻ đường thẳng song song với BD cắt CB tại E 

Lại có:

\(\widehat{BAE}=\widehat{ABD}=60^o\) ( so le trong ) 

\(\widehat{CBD}=\widehat{AEB}=60^o\) ( đồng vị )

Suy ra tam giác ABE  đều 

=> AB = BE = EA = 6 ( cm ) (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 ( cm )

Tam giác ACE có AE // BD nên suy ra :

\(\frac{BC}{CE}=\frac{BD}{AE}\)

\(\Rightarrow BD=\frac{BC.AE}{CE}=\frac{12.6}{18}=4\left(cm\right)\)

b) Ta có: 

\(MB=MC=\frac{1}{2}.BC=\frac{1}{2}.12=6\left(cm\right)\left(2\right)\)

Từ (1) và (2) suy ra:

BM = AB => Tam giác ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao ( tính chất tam giác cân )

 Vậy \(BD\perp AM\)


 

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra: BM = AB ⇒ ∆ ABM cân tại B

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD ⊥ AM

11 tháng 7 2017

a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)

b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.

12 tháng 10 2018

a) Ta có:

ˆABD=ˆCBD=ˆABC2=120∘2=60∘ABD^=CBD^=ABC^2=120∘2=60∘

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60∘BAE^=ABD^=60∘ (so le trong)

ˆCBD=ˆAEB=60∘CBD^=AEB^=60∘ (đồng vị)

Suy ra tam giác ABE đều

⇒AB=BE=EA=6(cm)(1)⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

BCCE=BDAE⇒BD=BC.AECE=12.618=4(cm)

b) Ta có:

MB=MC=12.BC=12.12=6(cm)(2)MB=MC=12.BC=12.12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM

29 tháng 4 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm)     (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra: