K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

A B C D E F M a b

a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF

Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300

Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600

Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.

b) Dễ thấy ^CAM=1800-^BAC=600.

CM // AD => ^ACM=^DAC=1/2^BAC=600

Từ đó suy ra \(\Delta\)ACM là tam giác đều.

c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF

=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD

=> a - b = 1/2AD => AD= 2(a - b).

Vậy .........

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

27 tháng 11 2017

a. Do AD là phân giác BAC

=> BAD=CAD=1/2BAC=1/2.120=60*

Xét tam giác AED có 

EAD+EDA+AED=180*

60*+EDA+90*=180*

=> EDA=30*

Xét tam giác EAD và tam giác FAD có

AED=AFD=90*

AD chung

EAD=FAD=60*

=> tam giác EAD = tam giác FAD(ch-gn)

=> ED=FD; EDA=FDA=30*

Ta có EDF=EDA+FDA=2EDA=2.30*=60*

Từ ED=FD => tam giác EDF cân tại D

Xét tam giác cân DEF có EDF=60*

=> tam giác DEF là tam giác đều

14 tháng 3 2015

bai tinh chat tia phan giac cua mot goc

 

29 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

23 tháng 4 2017

A B C D H E M

a) Xét tam giác ABC ta có

BC2=52=25

AB2+AC2=25

->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)

b) xét tam giác BAD và tam giác EDA ta có

BD=AE (gt)

AD=AD ( cạnh chung)

góc BDA = góc EAD ( 2 góc sole trong và AE//BD)

-> tam giac BAD= tam giac EDA (c-g-c)

=> AB=DE ( 2 cạnh tương ứng)

c)ta có

góc CAD+ góc BAD =90 (2 góc kề phụ)

góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)

góc BAD=góc DAH ( AD là tia p./g góc BAH)

->góc CAD=góc CDA 

-> tam giác ADC cân tại C

d) Xét tam giác ADC cân tại C ta có

CM là đường trung tuyến ( M là trung điểm AD)

-> CM là đường cao

ta có

góc BAD= góc ADE (  tam giác BAD= tam giác EDA)

mà 2 góc nằm ở vị trí sole trong nên AB//DE

mặt khác AB vuông góc AC (  tam giác ABC vuông tại A)

do đó DE vuông góc AC

Gọi F là giao điểm DE và AC

Xét tam giác CAD ta có

DF là đường cao (DE vuông góc AC tại F)

AH là đường cao (AH vuông góc BC)

AH cắt DE tại I (gt)

-> I là trực tâm 

mà CM cũng là đường cao tam giác ACD (cmt)

nên CM đi qua I

-> C,M ,I thẳng hàng

11 tháng 3 2020

A E F B C G D

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G

11 tháng 3 2020

A B D E F C G

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G