K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

a) ΔABCΔABC vuông tại A, theo định lí Py-ta-go

Ta có: BC2 = AB2 + AC2

=> BC2 = 82 + 62

BC2 = 100

=> BC = 100−−−√=10(cm)100=10(cm)

b) Xét hai tam giác vuông ABE và ADE có:

AB = AD (gt)

AE: cạnh chung

Vậy: ΔABE=ΔADE(hcgv)ΔABE=ΔADE(hcgv)

Suy ra: BE = DE (hai cạnh tương ứng)

BEAˆ=DEAˆBEA^=DEA^ (hai góc tương ứng)

Ta có: BEAˆ+BECˆ=180oBEA^+BEC^=180o

DEAˆ+DECˆ=180oDEA^+DEC^=180o

Mà BEAˆ=DEAˆBEA^=DEA^ (cmt)

Suy ra: BECˆ=DECˆBEC^=DEC^

Xét hai tam giác BEC và DEC có:

BE = DE (cmt)

BECˆ=DECˆBEC^=DEC^ (cmt)

EC: cạnh chung

Vậy: ΔBEC=ΔDEC(c−g−c)ΔBEC=ΔDEC(c−g−c).

goi DE ∩∩ BC tại I

có AB = AD (gt)

=> CA là đường trung tuyến của ΔΔ ABC

có AE = 2 cm ( gt)

và AC = 6 cm (gt)

=> AE = 1313AC

=> E là trọng tâm của ΔΔ ABC

=> DE là đường trung tuyến còn lại

=> BI = CI ( theo tính chất đường trung tuyến )

=> I là trung điểm của BC

vậy DE đi qua trung điểm của BC

21 tháng 4 2019

A B C D E I

a, Áp dụng định lý Pytago vào tam giác vuông ABC có:

 AB2 + AC2 = BC2

9+ AC2 = 152

81 + AC2 = 225

AC2 = 225 - 81

AC= 144

AC = 12 (cm)

Xét tam giác ABC có: AB < AC < BC.
nên góc ACB <  ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )

b,do A là trung điểm BD (gt)
nên AB=DB 
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C

c,...

21 tháng 4 2019
10 sao nhé10 K NHA !
26 tháng 12 2017

B A C D E H

*Xét ΔABE và ΔACD có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AE=AD\left(gt\right)\\\widehat{A}.g\text{óc}.chung\end{matrix}\right.\)

⇒ ΔABE = ΔCAD (c - g - c)

⇒ BE = CD (hai cạnh tương ứng)

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng