Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
D với F. Xét ΔBDF và ΔFDE ta có:
ˆBDF=^DFE (so le trong (Vì AB//EF (gt))
DF cạnh chung
ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))
⇒ΔBDF=ΔFDE (g.c.g)
⇒DB=EF (2 cạnh tương ứng )
Mà DB=DA (D là trung điểm AB)
Suy ra AD=EF
b)Xét ΔADE và ΔEFC ta có:
ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)
AD=EF (cmt)
ˆDAE=ˆFEC(đồng vị của DE//BC)
⇒ΔADE=ΔEFC (g.c.g)
c)Vì ΔADE=ΔEFC (cmt)
Suy ra AE=EC (2 cạnh tương ứng )
HT
a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
a)Nối D với F .
Do DE // BF , EF // BD
nên tam giác DEF=tam giác FBD(g.c.g)
=>EI=DB .
Ta lại có:AD=DB
=>AD=BF
b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .
AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)
=>tam giác ADE=tam giác EFC(g.c.g)
c)tam giác ADE=tam giác EFC(câu B)
=>AE=EC(g.c.g)
mặt dù đây ko phải câu hỏi mình chọn nhưng nó rất là hay và dễ hiểu
Mình cũng xin chúc các bạn năm mới vui vẻ cùng Hoc24 nha!
a)Nối D với F .
Do DE // BF , EF // BD
nên tam giác DEF=tam giác FBD(g.c.g)
=>EI=DB .
Ta lại có:AD=DB
=>AD=BF
b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .
AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)
=>tam giác ADE=tam giác EFC(g.c.g)
c)tam giác ADE=tam giác EFC(câu B)
=>AE=EC(g.c.g)
xét T/G EDF và BFD
DF chung EDF=BFD (so le trong ) vì ED//CB ( gt)
EFD=BDF ( so le trong ) vì EF//AB (gt)
=> EDF=BFD ( G.C.G) => EF = BD ( 2 cạnh tương ứng ) mà DB =AD ( trung điểm D) => EF=AD ( dcpcm)
câu B) có EF=AD (CMT)
có CEF=EAC ( đồng vị ) vì EF//AB
có EFC=ADE ( cùng đồng vị với góc B ) vì EF//AB và ED//CB
=> ADE=EFC ( G.C.G)
câu C)
Có T/G ADE = EFC (CMT) => AE=EC (2 cạnh tương ứng )
xong k đúng dùm mình nha
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE