K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔADE và ΔCFE, ta có:

AE = CE ( Do E là trung điểm của AC).

∠(AED) =∠(CEF) (đối đỉnh)

DE = FE ( giả thiết)

Suy ra: ΔADE= ΔCFE (c.g.c)

⇒AD = CF (hai cạnh tương ứng)

Mà AD = DB ( vì D là trung điểm AB).

Vậy: DB = CF

b: Xét tứ giác ADCF có 

E là trung điểm của AC

E là trung điểm của DF

Do đó: ADCF là hình bình hành

Suy ra: FC=AD

hay FC=DB

c: Ta có: ADCF là hình bình hành

nên CF//AD

hay CF//AB

20 tháng 12 2021

\(a,\left\{{}\begin{matrix}AE=EC\\DE=EF\\\widehat{AED}=\widehat{CEF}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\\ b,\Delta ADE=\Delta CFE\\ \Rightarrow AD=CF\\ \text{Mà }AD=DB\Rightarrow BD=CF\\ c,\Delta ADE=\Delta CFE\Rightarrow\widehat{ADE}=\widehat{CFE}\\ \text{Mà 2 góc này ở vị trí slt }\Rightarrow AB\text{//}CF\)

20 tháng 12 2021

c: Xét tứ giác ADCF có 

E là trung điểm của AC

E là trung điểm của DF

Do đó: ADCF là hình bình hành

Suy ra: AD//CF

hay AB//CF

20 tháng 12 2021

a: Xét tứ giác BDFC có

FD//BC

FD=BC

Do đó: BDFC là hình bình hành

Suy ra: DB=FC

16 tháng 1

🤝🤘🏼🤘🏼🤞🏼👉🏾👈🏾

30 tháng 7 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: ΔADE= ΔCFE(chứng minh trên)

⇒∠(ADE) =∠(CFE) (hai góc tương ứng)

Suy ra: AD // CF (vì có cặp góc so le trong bằng nhau)

Hay AB // CF

Xét ΔBDC và ΔFCD, ta có:

BD = CF (chứng minh trên)

∠(BDC) =∠(FCD) (hai góc so le trong vì CF // AB)

DC cạnh chung

Suy ra: ΔBDC= ΔFCD (c.g.c)

10 tháng 6 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: ΔBDC= ΔFCD(chứng minh trên)

Suy ra: ∠(C1 ) =∠(D1 ) (hai góc tương ứng)

Suy ra: DE // BC ( vì có hai góc so le trong bằng nhau)

ΔBDC= ΔFCD suy ra BC = DF (hai cạnh tương ứng)

Mà DE = 1/2 DF(gt). Vậy DE = 1/2 BC