Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét \(\Delta DBF\) và \(\Delta FED:\)
DF:cạnh chung
\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)
\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)
Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)
Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)
=>\(\widehat{DAE}=\widehat{FEC}\)
Xét \(\Delta DAE\) và \(\Delta FEC:\)
DA=FE(=BD)
\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (cmt)
=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
Xét tứ giác AEDF có AE//DF và AF//DE nên tứ giác AEDF là hình bình hành
do đó \(\hept{\begin{cases}AE=DF\\AF=DE\\\widehat{AED}=\widehat{DFA}\end{cases}\Rightarrow\Delta AED=\Delta DFA\left(c.g.c\right)}\)
cũng từ tứ giác AEDF là hình bình hành do đó \(\hept{\begin{cases}AE=DF\\AF=DE\\\widehat{EAF}=\widehat{FDE}\end{cases}\Rightarrow\Delta AEF=\Delta DFE\left(c.g.c\right)}\)
a) CM tam giác AED = tam giác DFA
xét tam giác AED và tam giác DFA có:
\(\widehat{A_1}=\widehat{D_1}\)(AF//DE, so le trong)
\(\widehat{A_2}=\widehat{D_2}\)(AE//DF, so le trong)
AD: chung
=> tam giác AED = tam giác DFA
b) bạn làm tương tự câu a nhé