K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

DO đó: BHCD là hình bình hành

24 tháng 12 2023

a: Ta có:BD\(\perp\)AB

CH\(\perp\)AB

Do đó: BD//CH

Ta có: CD\(\perp\)CA

BH\(\perp\)CA

Do đó: CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: ta có: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

=>H,M,D thẳng hàng

d: Để hình bình hành BHCD trở thành hình thoi thì HB=HC

=>ΔHBC cân tại H

=>\(\widehat{HBC}=\widehat{HCB}\)

Ta có: \(\widehat{HBC}+\widehat{ACB}=90^0\)(BH\(\perp\)AC)

\(\widehat{HCB}+\widehat{ABC}=90^0\)(CH\(\perp\)AB)

mà \(\widehat{HBC}=\widehat{HCB}\)

nên \(\widehat{ABC}=\widehat{ACB}\)

24 tháng 12 2023

bạn giả thiếu câu c =(

 

 

25 tháng 10 2021

a: Xét tứ giác BDCH có 

BD//CH

BH//CD

Do đó: BDCH là hình bình hành

23 tháng 12 2021

\(a,\) Vì H là trực tâm nên BH,CH là đường cao tam giác ABC

\(\Rightarrow BH\perp AC;CH\perp AB\\ \Rightarrow BH\text{//}CD;CH\text{//}BD\\ \Rightarrow BDCH\text{ là hbh}\)

\(b,BDCH\text{ là hbh}\Rightarrow\widehat{BHC}=\widehat{BDC}\\ \text{Xét tứ giác }ABCD:\widehat{BAC}+\widehat{BAD}+\widehat{DAC}+\widehat{BDC}=360^0\\ \Rightarrow\widehat{BAC}+\widehat{BDC}=360^0-90^0-90^0=180^0\\ \Rightarrow\widehat{BAC}+\widehat{BHC}=180^0\)

\(c,\) Gọi O là trung điểm AD \(\Rightarrow OA=OD=\dfrac{1}{2}AD\)

\(\Delta ABD\text{ và }\Delta ACD\text{ vuông tại }B,C\text{ có }BO,CO\text{ là trung tuyến ứng ch }AD\)

\(\Rightarrow BO=CO=\dfrac{1}{2}AD\)

Vậy \(AO=BO=CO=DO\) hay A,B,C,D cách đều O

tên các điểm bn tự đặt nha

a) ta có CK // HB ( do cùng vuông góc với AC)

              CH// BK (do cùng vuông góc với AB)

tứ giác BKCH có  CK // HB ,CH// BK => BKCH là hbh

b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)

                      A+K = 90

                          K= 30   

c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK

d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM

  tam giác AKH có AH//OM, KM=MH =>AO=OK (1)

từ O kẻ OS sao cho SA=SB

tam giác AKB có SA=SB, AO=OK => OS//BK 

 lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC

=> OA=OB=OC(2)

từ 1 và 2 => OA=OB=OC=OK