Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
THAM KHẢO NHÉ. XIN LỖI VÌ KO TRÙNG ĐỀ
Giải thích các bước giải:
a.Gọi là tâm đường tròn bàng tiếp trong góc
lần lượt là phân giác ngoài tại đỉnh
Ta có tiếp xúc lần lượt tại
là tiếp tuyến của
b.Vì tiếp xúc với tại là tiếp tuyến của
Ta có là tiếp tuyến của
là tiếp tuyến của
c.Ta có:
Ta chỉ cần chứng minh \(BD=CE.\) (Thực vậy, khi đó nếu I là trung điểm BC thì BI=EI).
Để cho tiện ta kí hiệu \(a=BC,b=CA,c=AB.\)
Gọi \(D,P,Q\) là tiếp điểm của đường tròn nội tiếp với ba cạnh \(BC,CA,AB.\)
Gọi \(E,R,S\) là tiếp điểm của đường tròn bàng tiếp góc A với ba cạnh \(BC,CA,AB.\)
Ta có \(BD=BQ,CR=CD,AQ=AR\Rightarrow BD+CR+AQ=\frac{a+b+c}{2}\)
Mặt khác \(AR+CR=b\Rightarrow BD=\frac{a+c-b}{2}\). (1)
Theo tính chất tiếp tuyến
\(2AR=AR+AS=AB+AC+BS+CR=AB+AC+BC\Rightarrow AR=\frac{a+b+c}{2}.\)
Do đó \(CE=CR=AR-AC=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}.\) (2)
Từ (1),(2) suy ra \(BD=CE\).