K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2019

A B C D E K

Bài này có 1 cách cực kì nhanh, ko cần phân tích vecto, đó là sử dụng Menelaus của lớp 8:

Nếu B, K, E thẳng hàng, xét tam giác ACD có BE lần lượt cắt 3 cạnh tam giác tại E, K, B nên theo Menelaus ta có:

\(\frac{EA}{EC}.\frac{BC}{BD}.\frac{DK}{KA}=1\Leftrightarrow\frac{3}{1}.\frac{3}{1}.\frac{DK}{KA}=1\Rightarrow AK=9DK\Rightarrow AK=\frac{9}{10}AD\)

Vậy điểm K nằm ở vị trí sao cho \(\overrightarrow{AK}=\frac{9}{10}\overrightarrow{AD}\) thì B, K, E thẳng hàng

29 tháng 3 2019

Cảm ơn bạn nhiềuuuuuuu! (^V^)

15 tháng 12 2022

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AD}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BD}\right)\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BD}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{BC}\)

\(=\dfrac{8}{9}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{AC}\)

Vì 8/9:1=2/9:1/4

nên B,E,K thẳng hàng

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(\overrightarrow {AB} .\overrightarrow {AC}  = 2.3.\cos \widehat {BAC} = 6.\cos {60^o} = 3\)

b)

Ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)(do M là trung điểm của BC)

\( \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \)

+) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB}  = \frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} \)

c) Ta có:

 \(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} } \right)\\ = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC}  - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{7}{{24}}{\overrightarrow {AC} ^2} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \\ =  - \frac{1}{2}A{B^2} + \frac{7}{{24}}A{C^2} - \frac{5}{{24}}\overrightarrow {AB} .\overrightarrow {AC} \\ =  - \frac{1}{2}{.2^2} + \frac{7}{{24}}{.3^2} - \frac{5}{{24}}.3\\ = 0\end{array}\)

\( \Rightarrow AM \bot BD\)