K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

a: Xét ΔABC có

D là trung điểm của BC

E là trung điểm của AB

Do đó: DE là đường trung bình

=>DE//FA và DE=FA
hay AEDF là hình bình hành

28 tháng 12 2021

phần b :? c :?

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

1 tháng 11 2019

A F E D B C M

Mình vẽ hình hơi xâu, bạn thông cảm nhé!

a) Xét từ giác ABMC  có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)

                                    + DA = DM (gt)

                                    + DB = DM(gt)

suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật

1 tháng 11 2019

Các câu còn lại bạn đầu có thể giải theo cách trên nhé! 

( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

a. Điểm M và điểm D đối xứng qua trục AB

⇒ AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM

⇒ AED^=900

Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN

⇒ AC ⊥ DN ⇒AFD^=900

EAF^=900 (gt)

Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)

b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB

Trong ∆ ABC ta có: DB = DC (gt)

DE // AC

Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM : AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)

Xét tứ giác ADCN:

AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)

c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng

Và AM = AN  nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng với nhau qua điểm A

d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 12AB ; AF =12AC

nên AE = AF  AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

 
28 tháng 11 2021
Công chúa thủy tế