K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

Sửa đề: Vuông góc với AC,AP tại N,P

a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có

BI chung

\(\widehat{PBI}=\widehat{MBI}\)

Do đó: ΔBPI=ΔBMI

=>BP=BM

b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có

CI chung

\(\widehat{MCI}=\widehat{NCI}\)

Do đó: ΔIMC=ΔINC

=>IM=IN

c: ΔMCI=ΔNCI

=>MC=CN

BP+CN

=BM+MC

=BC

d: ΔBPI=ΔBMI

=>IP=IM

mà IM=IN

nên IP=IN

Xét ΔAPI vuông tại P và ΔANI vuông tại N có

AI chung

IP=IN

Do đó: ΔAPI=ΔANI

=>\(\widehat{PAI}=\widehat{NAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha

18 tháng 11 2017