K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thiếu điều kiện rồi bạn

Đề sai rồi bạn

26 tháng 12 2021

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

16 tháng 12 2021

Có cái kkk

7 tháng 3 2022

a.Xét tam giác ABE và tam giác ACD, có:

\(\widehat{A}:chung\)

AD = AE ( gt )

AB = AC ( ABC cân )

Vậy tam giác ABE = tam giác ACD ( c.g.c )

b.Xét tam giác DBC và tam giác ECB, có:

BD = CE ( AB=AC; AD=AE )

góc B = góc C ( ABC cân )

BC: cạnh chung 

Vậy tam giác DBC = tam giác ECB ( c.g.c )

=> góc DCB = góc EBC ( 2 góc tương ứng )

=> Tam giác KBC là tam giác cân và cân tại K

c.Xét tam giác AKB và tam giác AKC có:

AB=AC ( ABC cân )

góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )

AK: cạnh chung 

Vậy tam giác AKB = tam giác AKC ( c.g.c )

=> góc BAK = góc CAK ( 2 góc tương ứng )

Mà Tam giác ADE cân tại A ( AD=AE )

=> AK là đường cao 

=> AK vuông DE (1)

Mà Tam giác KBC cân tại K 

=> AK vuông với BC (2)

Từ (1) và (2) => DE//BC

d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến

Mà M là trung điểm BC 

=> A,K,M thẳng hàng

 

22 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là tia phân giác

24 tháng 12 2021

Thi tự làm

24 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

a: Xét ΔAEBvà ΔADC có

AE=AD
góc A chung

AB=AC
=>ΔAEB=ΔADC

=>BE=CD

b: Xét ΔMDB và ΔMEC có

góc MDB=góc MEC

DB=EC

góc MBD=góc MCE
=>ΔMDB=ΔMEC

c: Xét ΔAMB và ΔAMC có

MA chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

1 tháng 5 2023

`@`` \text {dnv}`

`a,`

Xét `\Delta ABE` và `\Delta ACD`:

`\text {AB = AC (Tam giác ABC cân tại A)}`

`\hat {A}`` \text {chung}`

`\text {AD = AE (gt)}`

`=> \Delta ABE = \Delta ACD (c-g-c)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Vì `\Delta ABE = \Delta ACD (a)`

$ -> \widehat {ACD} = \widehat {ABE} (\text {2 góc tương ứng})$

`->` $\widehat {ADC} = \widehat {AEB} (\text {2 góc tương ứng})$

Ta có: \(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\)

$\widehat {ADC} = \widehat {AEB}$

`->` $\widehat {CEB} = \widehat {BDC}$

Ta có:\(\left\{{}\begin{matrix}\text{AB = AD + DB}\\\text{AC = AE + EC}\end{matrix}\right.\)

Mà: \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{AD = AE}\end{matrix}\right.\)

`-> \text {BD = EC}`

Xét `\Delta BMD` và `\Delta CME`:

\(\widehat{\text{DBM}}=\widehat{\text{ECM}}\left(\text{CMT}\right)\)

\(\text{BD = CE (CMT)}\)

\(\widehat{\text{BDM}}=\widehat{\text{CEM}\text{ }}\text{ }\left(\text{CMT}\right)\)

`=> \Delta BMD = \Delta CME (g-c-g)`

`c,` Đề có phải là "Chứng minh AM là phân giác của góc BAC" ?

Vì `\Delta BMD = \Delta CME (b)`

`-> \text {MB = MC (2 cạnh tương ứng)}`

Xét `\Delta BAM` và `\Delta CAM`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\text {AM chung}`

`\text {MB = MC (CMT)}`

`=> \Delta BAM = \Delta CAM (c-c-c)`

`->` $\widehat {BAM} = \widehat {CAM} (\text {2 góc tương ứng})$

`-> `\(\text{AM là tia phân giác của }\widehat{\text{BAC}}\)

loading...