Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)a) Ta có: \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
\(\widehat{KEB}=\widehat{C}\)(hai góc đồng vị, KE//AC)
Do đó: \(\widehat{KBE}=\widehat{KEB}\)
Suy ra: ΔKEB cân tại K
hay KB=KE
Cach giai don gian nhu sau
Em ve hinh binh hanh CPDQ ta suy ra dong thoi 3 ket qua sau :
{ PD = CQ = PB => tg PBD can tai P (1)
{ M la trung diem BC; N la trung diem DC => MN//BD hay IK//BD (2)
{ PD//CQ hay PD//AK (3)
Tu (2) va (3) => tg AIK ~ tg PBD ( vi co AI va PB cung thuoc duong thang AB)
=> theo (1) tg AIK can tai A
P/s. sửa đề : Chứng minh : \(2\left(AM+BM+CM\right)>AB+AC+BC\)
Xét tam giác AMB ta có :
\(AM+BM>AB\)( bất đẳng thức trong tam giác ) (1)
Xét tam giác AMC ta có :
\(AM+CM>AC\)(bất đẳng thức tam giác )(2)
Xét tam giác BMC ta có :
\(BM+CM>BC\)(bất đẳng thức tam giác )(3)
Từ(1) ;(2) và (3)
\(\Rightarrow AM+BM+AM+MC+BM+MC>AB+AC+BC\)
\(\Rightarrow2AM+2BM+2CM>AB+AC+BC\)
\(\Rightarrow2\left(AM+BM+CM\right)>AB+AC+BC\) (đpcm)