K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Cho tam giác ABC vg tại AAco đg ttrung tuyến AM.Gọi D là trung điểm củ AB E là đ dối xứng vs M qua D.

a)c/m AEBM là hinhhình thoi

b)gọi I là ttung đ của AM.c/m EIC thẳng hàng

c)tam giác ABC ccó themthêm điều kiện gì thì AEBM là hình

Cụ thể như sau:

Vẽ ��,��MH,NK vuông góc ��BC thì thấy ngay �(���)=�(���)S(BMC)=S(BNC) (�S là diện tích hình)

Suy ra �(���)=�(���)S(AMC)=S(ANB) hay �(���)�(���)=�(���)�(���)S(ABC)S(AMC)​=S(ACB)S(ANB)​, nghĩa là có câu a.

Mà có câu a thì có câu b

14 tháng 3 2021

Dòng đầu tiên em áp dụng kiến thức nào vậy nhỉ ? 

17 tháng 1 2016

Ta có: AB=AM+MB=8+11=19

Vì MN//BC (gt)

=>\(\frac{AM}{AB}=\frac{AN}{AC}\Rightarrow AN=\frac{AM.AC}{AB}=\frac{11.24}{19}=\frac{264}{19}\left(cm\right)\)

=>NC=24-AN bạn tự tính

17 tháng 1 2016

bạn vẽ hình cho mình vs

7 tháng 5 2017

ta có AM+BM=AB

AB=11+8=19

ta có MM//BC 

\(\frac{AM}{AB}=\frac{AN}{AC}\)

mà \(\frac{AM}{AB}=\frac{11}{19}\)

\(\frac{AN}{24}=\frac{11}{19}\)

AN=\(\frac{24.11}{19}\)

6 tháng 5 2017

A B C M N do MN //BC, theo định lý ta-lét

AM/MB=AN/NC=11/8=>AN/AN+NC=11/11+8<=>AN/AC=11/19<=>AN/24=11/19=>AN=264/19,MC=24-AN=192/19

a) Xét ΔABC có 

MN//BC(gt)

Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(Định lí Ta lét)

Suy ra: \(\dfrac{6}{4}=\dfrac{8}{NC}\)

hay \(NC=\dfrac{16}{3}cm\)

Ta có: AM+MB=AB(M nằm giữa A và B)

nên AB=6+4=10(cm)

Ta có: AN+NC=AC(N nằm giữa A và C)

nên \(AC=8+\dfrac{16}{3}=\dfrac{40}{3}cm\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{40}{3}\right)^2=\dfrac{2500}{9}\)

hay \(BC=\dfrac{50}{3}cm\)

Xét ΔABC có 

MN//BC(gt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{\dfrac{50}{3}}=\dfrac{6}{10}\)

\(\Leftrightarrow MN=\dfrac{6\cdot\dfrac{50}{3}}{10}=\dfrac{100}{10}=10cm\)

Vậy: MN=10cm; \(NC=\dfrac{16}{3}cm\)\(BC=\dfrac{50}{3}cm\)

6 tháng 2 2020

ta có AB=AM+MB=11+8=19 (cm)

xát tgAMN và tgABC có gA chung

                                       gAMN = gABC (hai góc đồng vị của MN//BC)

=>tgAMN ~ tgABC (g.g)

=>AM/AB=AN/AC=>11/19=AN/38

=>AN=22 (cm)

ta có AC=AN+NC=>NC = 38-22=16(cm)