Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhé !
Giải
a) Xét tam giác MHB và tam giác MKC có
MB = MC ( vì M là trung điểm của BC )
HMB = KMC ( vì đối đỉnh )
MH = MK ( vì m là trung điểm của HK )
Do đó Tam giác MHB = tam giác MKC
a) Xét ΔABH,ΔAKHΔABH,ΔAKH có:
BH=HK(gt)BH=HK(gt)
ˆAHB=ˆAHKAHB^=AHK^
AH: cạnh chung
⇒ΔABH=ΔAKH(c−g−c)⇒ΔABH=ΔAKH(c−g−c)
b) Vì ΔABH=ΔAKHΔABH=ΔAKH
⇒AB=AK⇒AB=AK ( cạnh tương ứng ) (1)
Xét ΔAMK,ΔCMEΔAMK,ΔCME có:
AM=MC(=12AC)AM=MC(=12AC)
ˆM1=ˆM2M1^=M2^ ( đối đỉnh )
EM=KM(gt)EM=KM(gt)
⇒ΔAMK=ΔCME(c−g−c)⇒ΔAMK=ΔCME(c−g−c)
⇒EC=AK⇒EC=AK ( cạnh tương ứng ) (2)
Từ (1) và (2) ⇒EC=AB(=AK)⇒EC=AB(=AK)
c) Xét ΔAMEΔAME và ΔCMKΔCMK có:
AM=MC(=12AC)AM=MC(=12AC)
ˆM3=ˆM4M3^=M4^ ( đối đỉnh )
KM=EM(gt)KM=EM(gt)
⇒ΔAME=ΔCMK(c−g−c)⇒ΔAME=ΔCMK(c−g−c)
⇒ˆE1=ˆK1⇒E1^=K1^ ( góc tương ứng )
Mà ˆE1E1^ và ˆK1K1^ ở vị trí so le trong nên AE // KC hay AE // BC
Vậy a) ΔABH=ΔAKH
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H