K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

a) chứng minh tam giác ABI = tam giác BEC

23 tháng 7 2020

a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)

Xét \(\Delta\)ABI và \(\Delta\)BEC có :

AI = BC(gt)

\(\widehat{IAB}=\widehat{EBC}\)(cmt)

AB = BE(tam giác ABE vuông cân tại B)

=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)

b) \(\Delta\)ABI  = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)

\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)

Gọi giao điểm của CE với AB là M

Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)

Do đó \(CE\perp BI\)

Gọi giao điểm của BF và AC là N

Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)

=> BF vuông góc với CI

c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy

–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M

28 tháng 2 2018

Hình vẽ:

28 tháng 2 2018

a) Ta có  \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm.

29 tháng 5 2018

a) Ta có  \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm.

29 tháng 5 2018

Vẽ hình đi bạn

Rồi mình giúp bạn làm

Vẽ hình xong gửi tin nhắn cho mình

:) Chúc bạn học tôt 

@@

21 tháng 2 2020

AH ở đâu v bn ?

21 tháng 2 2020

a) Ta có  góc AHB = 90

Theo tính chất góc ngoài của tam giác, ta có: 

góc IAB= góc AHB + gócHBA = 90 + góc HBA = góc EBA + góc HBA  = CBE

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

góc IAB =  CBE  (cmt)

⇒ΔABI = ΔBEC c − g − c

b) Do ΔABI = ΔBEC⇒BI = EC

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do ΔABI = ΔBEC⇒ = Vậy thì góc KBJ  + góc KJB = góc BEK + góc KJB = 90

Suy ra góc BKJ = 90  hay BI⊥CE

c) Chứng minh hoàn toàn tương tự ta có IC⊥BF

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm

22 tháng 5 2016

Toán lớp 7

a) Từ E kẻ đường thẳng vuông góc với BC cắt BC tại M.

Ta có: \(\widehat{EBM}+90^o+\widehat{ABH}=180^o\)

=> \(\widehat{EBM}+\widehat{ABH}=90^o\) (1)

Mặt khác, trong tam giác BAH vuông tại H, có: \(\widehat{BAH}+\widehat{ABH}=90^o\) (2)

Từ 1 và 2 => \(\widehat{EBM}=\widehat{BAH}\) => \(180^o-\widehat{EBM}=180^o-\widehat{BAH}=>\widehat{EBC}=\widehat{BAI}\)

Xét tam giác EBC và tam giác BAI, có:

EB=AB

\(\widehat{EBC}=\widehat{BAI}\)

BC=AI

=> \(\Delta EBC=\Delta BAI\left(c.g.c\right)\)=> \(\widehat{PIQ}=\widehat{QCH}\)(góc tương ứng)

b) Do tam giác EBC= tam giác BAI nên BI=EC( cạnh tương ứng)

*) Trong tam giác IPQ có: \(\widehat{PIQ}+\widehat{IOP}+\widehat{IPQ}=180^o\)(3)

*) Trong tam giác QHC có: \(\widehat{HQC}+\widehat{QCH}+\widehat{CHQ}=180^o\) (4)

=> \(\widehat{PIQ}+\widehat{IOP}+\widehat{IPQ}=\)\(\widehat{HQC}+\widehat{QCH}+\widehat{CHQ}\)

Mà : \(\widehat{PIQ}=\widehat{QCH}\)

\(\widehat{IOP}=\widehat{HQC}\) (góc đối đỉnh)

=> \(\widehat{IPQ}=\widehat{CHQ}=90^o\)

Vậy IB vuông góc với EC và cắt nhau tại P.c) Nối I với C. điểm giao nhau của IC và BF là TTương tự câu a và câu b thì IC cũng vuông góc BFTrong tam giác IBC thì có: 3 đường cao là: IH;CP;BT => 3 cạnh này cắt nhau tại 1 điểm => Ba đường thẳng AH , CE , BF đồng quy
7 tháng 4 2019

GIẢI RẤT NHIỆT TÌNH .CHO BẠN 1 LIKE

 

24 tháng 1 2017

nmnbkbfhf

7 tháng 8 2017

a) Tam giác ABI và BEC có: AI = BC, \(\widehat{BAI}=\widehat{EBC}\left(=90^o+\widehat{ABH}\right)\), AB = BE

\(\Rightarrow\Delta ABI=\Delta BEC\left(c.g.c\right)\)

b) Từ câu a => BI = CE và \(\widehat{ABI}=\widehat{BEC}\Rightarrow\widehat{ABI}+\widehat{EBI}=\widehat{BEC}+\widehat{EBI}=90^o\Rightarrow BI⊥CE\)

c) Chứng minh tương tự ta được \(CI⊥BF\)

Xét tam giác BIC có AH, CE, BF là ba đường cao nên đồng quy tại một điểm.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Đức Tạ - Toán lớp 7 - Học toán với OnlineMath

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Đức Tạ - Toán lớp 7 - Học toán với OnlineMath