Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác NMC có :
BM = MC do M là trung điểm của BC (gt)
AM = NM do M là trung điểm của AN (Gt)
góc AMB = góc NMC (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
b, tam giác AMB = tam giác NMC (câu a)
=> góc ABM = góc MCN (đn)
c, tam giác AMB = tam giác NMC (câu a)
=> BA = CN (đn) (1)
xét tam giác BAH và tam giác BIH có : BH chung
góc BHA = góc BHI = 90 (gt)
HI = HA (Gt)
=> tam giác BAH = tam giác BIH (2cgv)
=> BI = BA (đn) (2)
(1)(2) => BI = CN
a) Xét ∆ABM và ∆CMN ta có :
AM = MN
BM = MC
AMB = CMN ( đối đỉnh)
=> ∆ABM = ∆CMN (c.g.c)
b) Vì ∆ABM = ∆CMN (cmt)
=> ABM = NCM
Mà 2 góc này ở vị trí so le trong
=> AB //NC
=> DB // NC
Ta có : BDC + DCN = 180° ( kề bù)
=> DCN = 90°
c) Xét ∆ vuông ABH và ∆vuông IHB ta có :
AH = HI
BH chung
=> ∆ABH = ∆IHB ( 2 cạnh góc vuông)
=> BA = BI
Mà AB = CN (cmt)
=> BI = CN ( cùng bằng BA)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a: Xét ΔAMB và ΔEMC co
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAD cân tại B
=>BD=BA=CE
c: Xét ΔAMD có
MH vừa là đường cao, vừa là trung tuyến
nên ΔAMD cân tại M
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)
a: Xét ΔAMB và ΔNMC có
MA=MN
góc AMB=góc NMC
MB=MC
Do đó: ΔAMB=ΔNMC
b: Xét ΔBAI có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAI cân tại B
=>BA=BI=CN