Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: BF và CE cắt nhau tại H
a) Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
\(\Leftrightarrow CE\perp BE\)
\(\Leftrightarrow CE\perp AB\)
\(\Leftrightarrow\widehat{AEC}=90^0\)
hay \(\widehat{AEH}=90^0\)
Xét (O) có
ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBFC vuông tại F(Định lí)
\(\Leftrightarrow BF\perp CF\)
\(\Leftrightarrow BF\perp AC\)
\(\Leftrightarrow\widehat{AFB}=90^0\)
hay \(\widehat{AFH}=90^0\)
Xét tứ giác AEHF có
\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối
\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔABC có
BF là đường cao ứng với cạnh AC(cmt)
CE là đường cao ứng với cạnh AB(cmt)
BF cắt CE tại H(gt)
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
\(\Leftrightarrow AH\perp BC\)
hay \(AD\perp BC\)(đpcm)
a: góc BFC=góc BEC=1/2*180=90 độ
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
góc AFH+góc AEH=180 độ
=>AEHF là tứ giác nội tiếp
b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
=>AF/AD=AH/AB
=>AF*AB=AD*AH
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc FHE=180-60=120 độ
=>1/2(sđ cung FE+sđ cung BC)=120 độ
=>sđ cung FE=60 độ
=>góc FOE=60 độ
góc IFO=góc IFH+góc OFH
=90 độ
=>góc IEO=90 độ
=>IFOE nội tiếp đường tròn đường kính OI
góc FOE=60 độ
=>góc IOE=30 độ
=>OE/OI=1/căn 3
=>OI=Rcăn 3
=>R1=Rcăn 3/2