Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường
Do đó tứ giác BHCKBHCK là hình bình hành
b) Tứ giác BHCKBHCK là hình bình hành
⇒BK∥CH⇒BK∥CH
Mà CH⊥ABCH⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Gọi J=BC∩HIJ=BC∩HI
Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B
⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^
⇒ˆIBC=ˆHBC⇒IBC^=HBC^
mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)
Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)
ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK
Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)
Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.
d) Tứ giác GHCKGHCK có GK∥HCGK∥HC
Do đó GHCKGHCK là hình thang
Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^
mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)
Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^
ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)
ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)
Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^
Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^
ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^
Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^
hay ˆCBA=ˆCABCBA^=CAB^
⇒ΔABC⇒ΔABC cân đỉnh CC
ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.
a: Sửa đề: BHCK
Xét tứ giác BHCK có
M là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: BHCK là hình bình hành
=>BH//CK và BK//CH
=>BK vuông góc BA và CK vuông góc CA
c: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
=>ME=MF
=>ΔMEF cân tại M
a: Xét tứ giác BHCD có
M là trung điểm chung của BC và HD
=>BHCD là hình bình hành
b: BHCD là hình bình hành
=>BH//CD và BD//CH
BH//CD
CA\(\perp\)BH
Do đó: \(CA\perp\)CD
=>ΔACD vuông tại C
BD//CH
AB\(\perp\)CH
Do đó: AB\(\perp\)BD
=>ΔABD vuông tại B
c: ΔBAD vuông tại B
mà BI là đường trung tuyến
nên IB=IA=ID(1)
ΔCAD vuông tại C
mà CI là đường trung tuyến
nên CI=IA=ID(2)
Từ (1) và (2) suy ra IA=IB=IC=ID
a) Chứng minh tứ giác BHCD là hình bình hành:
Xét tứ giác BHCD:
M là trung điểm của BC (gt)
M là trung điểm của HD (gt)
*Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.
* Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).
b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:
Xét hình bình hành BHCD:
BH // CD (tính chất hình bình hành)
CH // BD (tính chất hình bình hành)
Xét tam giác ABC:
* AF là đường cao (gt) => AF vuông góc với BC
* Mà BH // CD (cmt) => AF vuông góc với CD
Tương tự:
CH // BD (cmt) => AF vuông góc với BD
Kết luận:
* Tam giác ABD vuông tại B (AF vuông góc với BD)
* Tam giác ACD vuông tại C (AF vuông góc với CD)
**c) Chứng minh IA=IB=IC=ID:**
* **Xét tam giác AHD:**
* M là trung điểm của HD (gt)
* I là trung điểm của AD (gt)
* Nên IM là đường trung tuyến của tam giác AHD
* Vậy IA = ID (tính chất đường trung tuyến trong tam giác)
* **Xét tam giác BCD:**
* M là trung điểm của BC (gt)
* I là trung điểm của AD (gt)
* Nên IM là đường trung tuyến của tam giác BCD
* Vậy IB = IC (tính chất đường trung tuyến trong tam giác)
* **Kết luận:**
* IA = IB = IC = ID
**Tóm lại:**
* Tứ giác BHCD là hình bình hành.
* Tam giác ABD vuông tại B và tam giác ACD vuông tại C.
* IA = IB = IC = ID.
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
b) Ta có: Tứ giác BHCK là hình bình hành.
=> HC//BK mà H thuộc FC (gt)
=> FC//BK(1)
FC vuông góc với AB(gt)(2)
Từ (1)(2) suy ra AB vuông góc với BK
Tương tự:
Có: tứ giác BHCK là hbh(cmt)
=> BH//KC mà H thuộc EB(gt)
=> BE// KC mà BE vuông góc với AC=> KC vuông góc với AC