Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác vuông BDC: DBC^ + DCB^ = 90o => DBC^ = 90o - DCB^= 90o - 60o = 30o
Tam giác vuông BHI: IBH^ + BIH^ = 90o => BIH^ = 90o - IBH^ = 90o - 30o = 60o
vẽ tam giác abc nhọn có 2 đường cao AH và BK cắt nhau ở I . Giả sủ góc c bằng 65 độ . tính IAB + ICB
làm tương tự
Tam giác ABC, đường cao AD và BK cắt nhau ở H. Vẽ đường trung trực IE,IF của AC,BC. C/m BH=2IE và AH=2IF.?
Bài làm
vì I là giao các đuờng trung trực tg ABC
=>I là tâm dtron ngoại tiêp tg ABC
gọi AI cắt đừong tròn ( I ) tại K
=>AK là đương kính => gABK=gACK=90
=>HC//BK(vì cùng vuong goc vs AB)
và HB//CK(vì cung vuong goc vs AC)
=> tg BHCK là hình bình hành
=> BC và HK cắt nhau tại trung điểm moi duong
=> F là trung diem của KH
vì AH/IF(vi cung vuong goc vs BC)
ap dung ta let trong tg AHK có AH//IF có
IF/AH=FK/HK=1/2 (vì F là trung điểm of HK)
=>AH=2IF
cmtt BH=2IE
mình đánh máy ko chuẩn có j sai sót mong b thông cảm nhé!
chúc bạn học tốt!
a) Xét \(\Delta\perp ADB\)và \(\Delta\perp AEC\)có :
\(\widehat{A}:chung\)(1)
\(AB=AC\)(vì tam giác ABC cân ) (2)
\(\widehat{ADB}=\widehat{AEC}=90^o\)(3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta\perp ADB=\Delta\perp AEC\)( cạnh huyền - góc nhọn )
\(\Rightarrow AD=AE\)( cặp cạnh tương ứng )
b) +)
Xét \(\Delta\perp AEH\)và \(\Delta\perp ADH\)có :
\(AE=AD\) ( chứng minh ở câu a ) (1)
\(\widehat{AEH}=\widehat{ADH}=90^o\)(2)
\(AH:\)Cạnh chung (3)
Từ (1) (2)và (3)
\(\Rightarrow\Delta\perp AEH=\Delta\perp ADH\)( c-g-c)
\(\Rightarrow\widehat{EAH}=\widehat{DAH}\)( cặp góc tương ứng )
=> AH là đường phân giác của góc BAC ( đpcm )
+)
Vì \(AE=AD\)( chứng minh ở câu a )
\(\Rightarrow\Delta EAD\)Cân (1)
Mà AH là phân giác của góc BAC ( chứng minh trên ) (2)
Từ (1) và (2) => AH là đường trung trực của ED ( đpcm )
( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực -- Áp dụng định lí này nha )
c) Vì \(AB=AC\)( do tam giác ABC cân ) (1)
\(AE=AD\)( chứng minh ở câu a ) (2)
Từ (1) và (2) [ Cộng vế với vế ]
\(\Rightarrow BE=CD\)
Xét \(\Delta\perp BEH\)và \(\Delta\perp HDC\)có :
\(\widehat{BEH}=\widehat{CDH}=90^o\)(1)
\(BE=CD\)( chứng minh trên ) (2)
\(\widehat{EHB}=\widehat{HDC}\)( đối đỉnh ) (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta\perp BEH=\Delta\perp HCD\)(g.c.g)
\(\Rightarrow BE=HC\)( 2 cạnh tương ứng )
a, Xét ∆ ABD và ∆ ACE có:
Góc D = góc E = 90°
AB = AC (∆ ABC cân)
Góc BAC chung
➡️∆ ABD = ∆ ACE (ch-gn)
➡️AD = AE (2 cạnh t/ư)
b, ✳️C/m AH là tia phân giác của góc BAC
Xét∆ ABC cân tại A có:
BD vuông góc với AC
CE vuông góc với AB
H là giao điểm của BD và CE
➡️H là trực tâm ∆ ABC
➡️AH vuông góc với BC
mà ∆ ABC cân tại A
➡️AH là đg cao đồng thời là đg phân giác
➡️AH là p/g góc BAC(đpcm)
✳️C/m AH là đg trung trực của ED
Xét ∆ AED cân tại A (AD = AE)
➡️AH là đg phân giác đồng thời là đg trung trực
➡️AH là đg trung trực của ED (đpcm)
c, Xét ∆ AEH và ∆ ADH có:
AE = AD (cmt)
Góc BAH = góc CAH (cmt)
AH chung
➡️∆ AEH = ∆ ADH (c.g.c)
➡️HE = HD (2 cạnh t/ư)
Xét ∆ CDH vuông tại D
➡️CH > HD
mà HE = HD (cmt)
➡️CH > HE
Còn câu d để mk nghĩ đã nhé
Câu d nè bn.
d, Vì AH là đg trung trực của EF và AH vuông góc với BC
➡️ED // BC (quan hệ từ vuông góc đến song song)
Ta có: góc FED = góc DBC (2 góc có 2 cạnh tương ứng song song)
Gọi AH giao BC tại M
Xét ∆ ABC cân tại A
➡️AH là đg cao đồng thời là trung tuyến
HM là trung tuyến của BC
Xét ∆ IBC có HM là đg cao đồng thời là trung tuyến
➡️∆ IBC cân tại I
➡️Góc DBC = góc ECB
Mà góc ECB = góc DEC (2 góc so le trong)
➡️Góc DEC = góc DBC
mà góc DBC = góc FED (cmt)
➡️Góc FED = góc DEC
➡️ED là tia phân giác góc FEC
Xét ∆ FEC có: CI là phân giác góc DCE (gt)
EI là phân giác góc FEC (cmt)
CI và EI giao nhau tại I
➡️I là tâm đg tròn nội tiếp∆ FEC
➡️FI là phân giác góc CFE
mà góc CFE vuông (EF // BD, góc BDC = 90°)
➡️Góc EFI = góc CFI = 90° ÷ 2 = 45°
Vậy góc EFI = 45°
Hok tốt nhé~
Tam giác ABC có BD và CE là các đuognừ cao giao nhau tại H, nên H là trực tâm của tam giác ABC
=> AH cũng là đường cao
Vậy AH vuông góc với BC
hhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh