K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

bạn tự vẽ hình nha chờ mik giải

2 tháng 4 2020

/lmio;g;hiugl7iul,ỳuyjfjhhhj

Bổ sung đề: Trên tia đối của tia BA, lấy F sao cho BF=EC

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{DAB}=\widehat{DAE}\)

AB=AE

Do đó: ΔADB=ΔADE

b: AB+BF=AF

AE+EC=AC

mà AB=AE

và BF=EC

nên AF=AC

c: ta có; ΔABD=ΔAED

=>\(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{DBF}=\widehat{DEC}\)

Ta có; ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

14 tháng 1 2016

fgrh5rhgieuuwequkgrgbfbgbnsedbgyerrryr

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔADB=ΔADE

=>góc ABD=góc AED

b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có

AE=AB

góc AEF=góc ABC

=>ΔAEF=ΔABC

=>AC=AF

3 tháng 11 2023

loading... a) Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (BD là tia phân giác của ABC)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ AD = ED (hai cạnh tương ứng)

Lại do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)

⇒ ∠DAF = ∠DEC = 90⁰

Xét hai tam giác vuông: ∆DAF và ∆DEC có:

AD = ED (cmt)

∠ADF = ∠EDC (đối đỉnh)

⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)

⇒ AF = EC (hai cạnh tương ứng)

c) ∆BAE có:

AB = BE (gt)

⇒ ∆BAE cân tại B

⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2  (1)

Do AF = EC (cmt)

AB = BE (gt)

⇒ AF + AB = EC + BE

⇒ BF = BC

⇒ ∆BFC cân tại B

⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2  (2)

Từ (1) và (2) suy ra:

∠BEA = ∠BCF

Mà ∠BEA và ∠BCF là hai góc đồng vị

⇒ AE // CF