Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BE\cdot BH\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CF\)
\(BH\cdot BE+CH\cdot CF\)
\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)
a: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét tứ giác BFHD có
góc BFH+goc BDH=180 độ
=>BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có
góc CEH+góc CDH=180 độ
=>CEHD là tứ giác nội tiếp
góc FDH=góc FBH
góc EDH=góc ACF
mà góc FBH=góc ACF
nên góc FDH=góc EDH
=>DH là phân giác của góc FDE(1)
góc EFH=góc CAD
góc DFH=góc EBC
mà góc CAD=góc EBC
nên góc EFH=góc DFH
=>FH là phân giác của góc EFD(2)
Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF
c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có
góc HBD chung
=>ΔBHD đồg dạng với ΔBCE
=>BH/BC=BD/BE
=>BH*BE=BC*BD
Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có
góc FCB chung
=>ΔCDH đồng dạng với ΔCFB
=>CD/CF=CH/CB
=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
*OLM đang lỗi nên không vẽ được hình, bạn vào thống kê mình để xem hình nhé! Mình vẽ ở GeoGebra*
a \(\hept{\begin{cases}S_{BHC}=\frac{1}{2}\cdot BC\cdot HD\\S_{ABC}=\frac{1}{2}\cdot BC\cdot AD\end{cases}}\Rightarrow\frac{HD}{AD}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự cũng có: \(\hept{\begin{cases}\frac{HE}{BE}=\frac{S_{AHC}}{S_{ABC}}\\\frac{HF}{CF}=\frac{S_{AHB}}{S_{ABC}}\end{cases}}\)
\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
b) Xét \(\Delta BHD\) và \(\Delta BCE\)có:
\(\widehat{B}\)chung
\(\widehat{BDH}=\widehat{BEC}=90^o\)
=> \(\Delta BHD\)đồng dạng với \(\Delta\)BEC (g.g)
=> \(\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH\cdot BE=BC\cdot BD\left(1\right)\)
Cmtt: \(\Delta CHD\)đồng dạng \(\Delta CBF\)(g.g)
=> \(\frac{CH}{CB}=\frac{CD}{CF}\Rightarrow CH\cdot CF=CB\cdot CD\left(2\right)\)
Từ (1) (2) => \(CH\cdot CF+BH\cdot BE=BC\cdot BD+CD\cdot CB=BC^2\)
c) \(\widehat{HDC}=\widehat{HEC}=90^o\)
=> Tứ giác HDCE nội tiếp
=> \(\widehat{HED}=\widehat{HCD}\)(3)
\(\widehat{AFH\:}=\widehat{AEH}=90^o\)
=> AFHE nội tiếp
=> \(\widehat{FEH}=\widehat{FAH}\left(4\right)\)
Mà \(\widehat{FAH}=\widehat{HCD}\) (cùng phụ \(\widehat{ABC}\)) (5)
(3)(4)(5)=> \(\widehat{FEH}=\widehat{HED}\)
=> EH là phân giác \(\widehat{FED}\)
Cmtt cũng được: DH là phân giác \(\widehat{FDE}\)và FH là phân giác \(\widehat{DFE}\)
=> H là tâm đường tròn nội tiếp tam giác EFD
=> H cách đều EF; FD; ED
d) Gọi O là giao của phân giác \(\widehat{BHC}\)và trung trực của CH. Theo gt thì điểm O cố đnhj
Ta có: OH=OC => \(\Delta\)HOC cân tại O => \(\widehat{CHO}=\widehat{HCO}\)
Mà \(\widehat{BHO}=\widehat{CHO}\)nên \(\widehat{MHO}=\widehat{NCO}\)
=> \(\Delta OMH=\Delta ONC\left(cgc\right)\)
=> OM=ON
=> O thuộc đường trung trực của MN, hay đường trung trực của MN luôn đi qua 1 điểm cố định
@qu y nh Bạn có thể làm ý c theo cách khác giúp mk đc không ạ!!! Mk chưa học tứ giác nội tiếp(Nội dung lớp 9)
a) Bạn hãy nhớ điều này: " 2 tam giác có đáy bằng nhau thì tỉ số diện tích = tỉ số 2 đường cao tương ứng 2 đáy, và 2 tam giác có 2 đường cao bằng nhau thì tỷ số diện tích = tỉ số 2 đáy tương ứng " - phần chứng minh xin nhường cho bạn vì nó không khó.
Áp dụng ta có: S(HDC)/S(ADC) = HD/AD (1). Chứng minh tương tự ta được S(BDH)/S(DAB) = HD/AD (2). Từ (1) và (2) => HD/AD = S(HDC)/S(ADC) = S(BDH)/S(DAB) = [ S(HDC) + S(BDH) ]/[ S(ADC) + S(DAB) ] = S(BHC)/S(ABC) (áp dụng tính chất dãy tỉ số bằng nhau)
=> HD/AD = S(BHC)/S(ABC) (3)
Chứng minh tương tự ta được:
HE/BE = S(AHC)/S(ABC) (4) và HF/CF = S(AHB)/S(ABC) (5)
Từ (3); (4) và (5) => HD/AD + HE/BE + HF/CF = S(BHC)/S(ABC) + S(AHC)/S(ABC) + S(AHB)/S(ABC) = [ S(BHC) + S(ACH) + S(ABH) ]/S(ABC) = S(ABC)/S(ABC) = 1
=> HD/AD + HE/BE + HF/CF = 1.
b) Ta chứng minh được ∆CHD ~ ∆CBF(g.g) - bạn tự chứng minh => CH/BC = CD/CF => CH.CF = BC.CD (6), chứng minh tương tự ta được: BH.BE = BC.DB (7). Từ (6) và (7) => BH.BE + CH.CF = BC.BD + BC.CD = BC(BD + CD) = BC²
c) Hãy nhớ lại kiến thức lớp 7: Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác.
Ta chứng minh được ∆AFC ~ ∆AEB(g.g) => AF/AE = AC/AB => AF/AC = AE/AB. => ta chứng minh được ∆AEF ~ ∆ABC(c.g.c) => góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA => góc CED = góc ABC => góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED => góc FEB = góc BED => BE là phân giác góc FED => EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD
=> đpcm
mình copy cho bạn lời giải đó
a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có
\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHFA~ΔHDC
=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)
=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)
c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
nên AFHE là tứ giác nội tiếp
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)
mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)
nên \(\widehat{EFH}=\widehat{DFH}\)
=>FH là phân giác của góc EFD
Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EH là phân giác của góc FED
Xét ΔFED có
EH,FH là các đường phân giác
Do đó: H là giao điểm của ba đường phân giác trong ΔFED