K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Chương II : Tam giác

a, ta có \(\widehat{A}=60^o\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng 3 góc 1 tam giác )

\(\Rightarrow\widehat{B}+\widehat{C}=120^o\) (1)

\(\widehat{BCI}+\widehat{IBC}=\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)\) ( BD (hay BI) và CE(hay CI) lần lượt là tia phân giác của \(\widehat{B}\)\(\widehat{D}\) )

\(\widehat{BCI}+\widehat{IBC}+\widehat{BIC}=180^o\) ( tổng 3 góc của 1 tam giác )

\(\Rightarrow\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)+\widehat{BIC}=180^o\)

thay (1) vào ta được :

\(\frac{1}{2}.120^o+\widehat{BIC}=180^o\\ \Rightarrow\widehat{BIC}=180^o-60^o=120^o\)

vậy \(\widehat{BIC}=120^o\)

b,

từ a có \(\widehat{BIC}=120^o\)

\(\widehat{CID}+\widehat{BIC}=180^o\\ \Rightarrow\widehat{CID}=180^o-120^o=60^o\)

\(\widehat{CDI}=\widehat{BIE}\) ( 2 góc đối đỉnh )

=> \(\widehat{BIE}=60^o\)

xét \(\Delta BIE\)\(\Delta BIF\)

có BE = BF (gt)

\(\widehat{IBE}=\widehat{IBF}\) ( tia BI ( hay BD ) là tia phân giác của góc B )

BI là cạnh chung

=> \(\Delta BIE=\Delta BIF\left(c.g.c\right)\)

=> \(\widehat{BIE}=\widehat{BIF}\) ( 2 góc tương ứng )

=> \(\widehat{BIE}=\widehat{BIF}=60^o\)

\(\widehat{FIC}+\widehat{FIB}=\widehat{BIC}=120^o\) (từ a )

=> \(\widehat{FIC}=120^o-60^o=60^o\)

=> \(\widehat{FIC}=\widehat{DIC}=60^o\)

xét \(\Delta CID\)\(\Delta CIF\)

\(\widehat{FCI}=\widehat{DCI}\) ( CI là tia phân giác của góc C )

CI là cạnh chung

\(\widehat{FIC}=\widehat{DIC}\) (cmt)

=> \(\Delta CID=\Delta CIF\) (đpcm)

28 tháng 3 2017

khong kho lam chac ban tu lam duoc chu

28 tháng 3 2017

k bạn ơi, giải giúp mik câu c đi bạn. mik giải đc 2 câu trên r

25 tháng 1 2019

A B C D E I F M

a) Xét trong tam giác BIC từ định lí tổng 3 góc của một tam giác bằng 10 độ

=>  \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}\)\(=180^o-\frac{1}{2}\widehat{ABC}-\frac{1}{2}\widehat{ACB}\)( tính chất phân giác)

\(=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)

Mà xét trong tam giác ABC cũng từ định lí tổng ba góc của một tam giác bằng 180 độ

=> \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BCA}=180^o-60^o=120^o\)

=> \(\widehat{BIC}=180^o-\frac{1}{2}.120^o=120^o\)

b) Xét tam giác BEI và tam giác BFI

Hai tam giác này bằng nhau theo trường hợp góc cạnh góc (tự chứng minh)

=> \(\widehat{EIB}=\widehat{FIB}\)

Mà \(\widehat{EIB}=\widehat{DIC}=180^o-\widehat{BIC}=60^o\)

=> \(\widehat{BIF}=60^o\Rightarrow\widehat{CIF}=\widehat{BIC}-\widehat{BIF}=120^o-60^o=60^o\)

=> \(\widehat{CID}=\widehat{CIF}\)

Xét Tam giác IDC và tam giác IFC có: 

IC chung

\(\widehat{CID}=\widehat{CIF}\)

\(\widehat{FIC}=\widehat{DIC}\)

=> \(\Delta CID=\Delta CIF\)(g-c-g)

a: góc ABC+góc ACB=180-60=120 độ

=>góc IBC+góc ICB=60 độ

=>góc BIC=120 độ

b: góc BIE=góc DIC=60 độ

Xét ΔEBIvà ΔFBI có

BE=BF

góc EBI=góc FBI

BI chung

Do đo: ΔEBI=ΔFBI

=>góc EIB=góc FIB=60 độ

=>góc FIC=60 độ

=>góc FIC=góc DIC

Xét ΔFCI và ΔDCI có

góc FIC=góc DIC

IC chung

góc ICF=góc ICD

Do đó; ΔFCI=ΔDCI

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

26 tháng 1 2017

a)

Tam giác ABC có:

BAC + ABC + ACB = 1800

600 + ABC + ACB = 1800

ABC + ACB = 1800 - 600

ABC + ACB = 1200

BI là tia phân giác của ABC

=> ABI = IBC = ABC : 2

CI là tia phân giác của ACB

=> ACI = CIB = ACB : 2

Tam giác IBC có:

BIC + IBC + ICB = 1800

BIC + ABC : 2 + ACB : 2 = 1800

BIC + \(\frac{1}{2}\) . (ABC + ACB) = 1800

BIC + 1200 : 2 = 1800

BIC + 600 = 1800

BIC = 1800 - 600

BIC = 1200

b)

FI là tia phân giác của BIC

=> CIF = FIB = BIC : 2 = 1200 : 2 = 600

EIB + BIC = 1800

EIB + 1200 = 1800

EIB = 1800 - 1200

EIB = 600

mà FIB = 600 (chứng minh trên)

=> EIB = FIB

Xét tam giác EIB và tam giác FIB có:

EIB = FIB (chứng minh trên)

IB chung

IBE = IBF (IB là tia phân giác của ABC)

=> Tam giác EIB = Tam giác FIB (g.c.g)

c)

EIB = DIC (2 góc đối đỉnh)

CIF = FIB (FI là tia phân giác của BIC)

mà EIB = FIB (chứng minh trên)

=> DIC = CIF

Xét tam giác CIF và tam giác CID có:

FIC = DIC (chứng minh trên)

IC chung

ICF = ICD (IC là tia phân giác của ACB)

=> Tam giác CIF = Tam giác CID (g.c.g)

=> IF = ID (2 cạnh tương ứng)

mà IF = IE (Tam giác EIB = Tam giác FIB)

=> IF = IE = ID

d)

CF = CD (Tam giác CIF = Tam giác CID)

EB = FB (Tam giác EIB = Tam giác FIB)

=> EB + CD = FB + CF = BC