Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét ΔABC có
DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{AB}\)
hay DE=BD
mà BD=CF
nên DE=CF
Xét tứ giác DEFC có
DE//CF
DE=CF
Do đó: DEFC là hình bình hành
Suy ra: Hai đường chéo DF và EC cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của EC
nên I là trung điểm của DF
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy
a, C/m t/giác IEF cân
b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF
c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH
Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM
a, Xét 2 tam giác vuông ΔADE và ΔABF có:
AD = AB (ABCD là hình vuông); DE = BF (gt)
⇒ ΔADE = ΔABF (2 cạnh góc vuông)
⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^
mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o
⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o
⇒ ˆEAFEAF^ = 90o90o (2)
Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)
b, ABCD là hình vuông ⇒ BA = BC và DA = DC
⇒ BD là đường trung trực của AC (3)
ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền
⇒ AI = 1212EF
ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền
⇒ CI = 1212EF
⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)
Từ (3) và (4) suy ra: I thuộc BD (đpcm)
d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường
⇒ AEKF là hình bình hành
mà AE = AF và ˆEAFEAF^ = 90o90o
⇒ AEKF là hình vuông (đpcm)