K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Câu a:

Xét tam giác BOD và tam giác COD có

BD=CD (Hai tiếp tuyến cùng xp từ 1 điểm)

OD chung

OB=OC (bán kính (O))

=> tg BOD = tg COD (c.c.c) => ^DOC = ^DOB (1)

Gọi K là giao của OD với (O) ta có 

sđ ^BOD = sđ cung BK; sđ ^COD = sđ cung CK (2)

Từ (1) và (2) => sđ cung BK = sđ cung CK mà sđ cung BK + sđ cung CK = sđ cung BKC => sđ cung BK = sđ cung CK = 1/2 sđ cung BKC (3)

Ta có sđ ^BAC = 1/2 sđ cung BKC (góc nội tiếp) (4)

Từ (2) (3) (4) => ^BAC = ^DOC (dpcm)

Câu 2:

Ta có sđ ^DBC = 1/2 sđ cung BKC (góc giữa tiếp tuyến và dây cung)

sđ ^BAC = 1/2 sđ cung BKC

=> ^BAC = ^DBC (1)

AB//DF => ^BAC = ^DIC (góc đồng vị) (2)

Từ (1) và (2) => ^DBC = ^DIC => B và I cùng nhìn DC dưới hai góc băng nhau => B; D; C; I cùng nawmg trên 1 ffwowngf tròn => tứ giác BDCI nội tiếp

Câu 3:

Ta có

sđ ^COD = sđ cung CK = 1/2 sđ cung BKC (cmt)

sđ ^BAC = 1/2 sđ cung BKC

=> ^COD = ^BAC

mà ^BAC = ^DIC (cmt)

=> ^COD = ^DIC => O và I cùng nhìn CD dưới 2 góc bằng nhau => tứ giác CDOI nội tiếp (1)

Ta có sđ ^OCD = 90 = 1/2 sđ cung OD (góc nội tiếp), mà sđ ^OID = 1/2 sđ cung OD (góc nội tiếp) => ^OID = ^OCD = 90 => IO vuông góc EF => I thuộc đường tròn đường kính OD

Câu 4:

Ta có B; O; C cố định => D cố định => đường tròn đường kính OD cố định

Mà I thuộc đường tròn đường kính OD cố định

=> Khi A chuyển động trên cung BC thì I di chuyển trên đường tròn đường kính OD

a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)

nên OBDC là tứ giác nội tiếp

=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)

Xét (O) có

\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)

b: Ta có: DI//AB

=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)

mà \(\widehat{CAB}=\widehat{DBC}\)

và \(\widehat{DBC}=\widehat{DOC}\)

nên \(\widehat{CID}=\widehat{COD}\)

=>CIOD là tứ giác nội tiếp

c: ta có: CIOD là tứ giác nội tiếp

=>\(\widehat{OID}=\widehat{OCD}=90^0\)

=>OI\(\perp\)EF tại I

Ta có: ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

=>IE=IF

11 tháng 3 2022

Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R), (BC cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. Chứng minh rằng \widehat{MBC}=\widehat{BAC} . Từ đó suy ra MBIC là tứ giác nội tiếp.

 

 theo gt, ta co:

goc MBC= BAC (cung chan cung BC)

mat khac, ta lai co goc BAC = MIC ( dong vi)

=> goc MBC= MIC

=> tu giac BICM noi tiep 

12 tháng 5 2021

answer-reply-imageđây nha bn

tk cho mk nha

b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)

mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)

\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp

\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)

câu c tí nữa làm :P

c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD

Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)

Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)

\(\Rightarrow ID.IH=IE.IF\)

 

a)Xét tứ giác MBOC có 

\(\widehat{OBM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OBM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MBOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

27 tháng 2 2018

a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)

Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)

Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)

Suy ra \(\widehat{MIC}=\widehat{MBC}\)

Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.

b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)

\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)

Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)

Vậy nên \(FI.FM=FE.FD\)

c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)

Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)

Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.

Suy ra \(\widehat{FIQ}=90^o\)

Vậy thì P, T, M thẳng hàng.

d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)

Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.

Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.

Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).

1.   Cho hpt :  \(\hept{\begin{cases}mx+y=3\\9x+my=2m+3\end{cases}}\)a) Giải pt với m = 2b) Tìm m để pt có 1 nghiệm, vô nghiệm, vô số nghiệmc) Tìm m để pt có nghiệm dươngđ) Tìm m để pt có nghiệm nguyên âm 2. Từ điểm M nằm ngoài (O) kẻ cát tuyến MCD. Tiếp tuyến với (O) tại C,D cắt nhau tại A. Gọi H là hình chiếu của A trên OM. Chứng minh:a) 5 điểm C,Đ,O,A,H cùng thuộc 1 đường trònb) MH.MO=MC.MDc) Kẻ tiếp...
Đọc tiếp

1.   Cho hpt :  \(\hept{\begin{cases}mx+y=3\\9x+my=2m+3\end{cases}}\)

a) Giải pt với m = 2

b) Tìm m để pt có 1 nghiệm, vô nghiệm, vô số nghiệm

c) Tìm m để pt có nghiệm dương

đ) Tìm m để pt có nghiệm nguyên âm 

2. Từ điểm M nằm ngoài (O) kẻ cát tuyến MCD. Tiếp tuyến với (O) tại C,D cắt nhau tại A. Gọi H là hình chiếu của A trên OM. Chứng minh:
a) 5 điểm C,Đ,O,A,H cùng thuộc 1 đường tròn
b) MH.MO=MC.MD
c) Kẻ tiếp tuyến MB. Chứng minh: MH.MO=MB^2
d) A,H,B thẳng hàng
e) AH cắt (O) tại E.Cm ME là tiếp tuyến của (O)
3. Cho tam giác ABC nhọn, nối tiếp đường tròn tâm O. Từ B,C kẻ tiếp tuyến với đường tròn, chúng cắt nhau tại D. Từ D kẻ cát tuyến song song với AB cắt đường tròn tại E,F và cắt AC tại I.
a) Cm góc DOC bằng góc BAC
b) 4 điểm O,I,D,C nằm trên 1 đường tròn
c) Cm IE=IF
d) ID là tia phân giác góc BIC
e) Cho B,C cố định, khi A chuyển động trên cung BC lớn thì I di chuyển trên đường nào ?

  giúp mk vs mn, mk đg cần gấp ............

1
18 tháng 4 2018

mn ơi giúp mk vs