K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

undefined

Mình viết gợi ý thôi nhé:

a) Tứ giác AEHF có hai góc vuông E và F có tổng bằng 180o nên là tứ giác nội tiếp.

b) Hai tam giác ABD và AQC đồng dạng nên \(\dfrac{AB}{AQ}=\dfrac{BD}{QC}\), suy ra \(AB.QC=BD.AQ.\)

c) Ý tưởng: cần chứng minh Q, I, H thẳng hàng.

Xét tứ giác BHCQ có:

+) BH // QC (cùng vuông góc với AC)

+) CH // BQ ( ... )

Do đó tứ giác BHCQ là tứ giác nội tiếp, nên hai đường chéo BC và QH cắt nhau tại trung điểm của mỗi đường.

Từ đó I là trung điểm của QH, OI là đường trung bình của tam giác AQH nên AH = 2OI.

a: góc BFC=góc BEC=90 độ

=>BCEF nội tiếp

góc AEH+góc AFH=180 dộ

=>AEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

=>BK//CH

góc ACK=1/2*sđ cung AK=90 độ

=>CK//BH

=>BHCK là hình bình hành

=>H đối xứng K qua M

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

=>ΔBDH đồng dạng với ΔBEC

=>BH/BC=DH/EC

=>BH*EC=DH*BC

a) Ta có: \(\widehat{BFC}=90^0\)(\(CF\perp AB\))

nên F nằm trên đường tròn đường kính BC(Định lí)(1)

Ta có: \(\widehat{BEC}=90^0\left(BE\perp AC\right)\)

nên E nằm trên đường tròn đường kính BC(Định lí)(2)

Từ (1) và (2) suy ra E và F cùng nằm trên đường tròn đường kính BC

mà B,C cùng nằm trên đường tròn đường kính BC

nên E,F,B,C cùng thuộc đường tròn đường kính BC

hay BFEC là tứ giác nội tiếp(đpcm)

 

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc EAH+góc ACB=90 độ

góc EBC+góc ACB=90 độ

=>góc EAH=góc EBC

b: AK cắt EF tại M

AK cắt BC tại N

AH cắt (O) tại K

=>HM//AB và QN//AB

=>HM//QN

10 tháng 5 2021

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn

11 tháng 5 2021

Vì 1 + 1 = 2 nên 2 + 2 = 4 

Đáp số : Không Biết

a: Xéttứ giác AEHF có góc AEH+góc AFH=180 độ

nên AEHF là tứ giác nội tiếp

c: Xét tứ giác AEDC có góc ADC=góc AEC=90 độ

nên AEDC là tứ giác nội tiếp

d: góc EDA=góc ABF

góc FDA=góc FDH=góc ACE

mà góc ABF=góc ACE

nên góc EDA=góc FDA

=>DA là phân giác của góc EDF