K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2023

- Dựng đường kính AK của (O).

- △ACK nội tiếp đường tròn đường kính AK nên △ACK vuông tại C.

- Xét △AHB và △ACK có: \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{ACK}=90^0\\\widehat{ABH}=\widehat{AKC}\left(=\dfrac{1}{2}sđ\stackrel\frown{BC}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AHB\sim\Delta ACK\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AK}\Rightarrow AH=\dfrac{AB.AC}{2R}\)

\(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{\dfrac{AB.AC}{2R}.BC}{2}=\dfrac{AB.AC.BC}{4R}\)

5 tháng 12 2023

a) Xét 2 tam giác ABE và ACF, ta có:

\(\widehat{AEB}=\widehat{ACF}=90^o\) và \(\widehat{A}\) chung 

nên \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) \(\Rightarrow AB.AF=AC.AE\) (đpcm)

b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó dễ dàng chứng minh \(\Delta AEF~\Delta ABC\left(c.g.c\right)\)

c) Kẻ đường kính AP của (O). Ta có \(\left\{{}\begin{matrix}AB\perp BP\\AB\perp HC\end{matrix}\right.\) \(\Rightarrow\) BP//HC

 CMTT, ta có CP//HB, dẫn đến tứ giác BHCP là hình bình hành. Lại có A' là trung điểm BC \(\Rightarrow\) A' cũng là trung điểm HP.

 Do đó OA' là đường trung bình của tam giác PAH \(\Rightarrow AH=2A'O\left(đpcm\right)\)

a: Kẻ tiếp tuyến Ax tại A của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>OA vuông góc FE tại I

góc ABJ=1/2*180=90 độ

góc FBJ+góc FIJ=180 độ

=>FBJI nội tiếp

b: Xét ΔMNC và ΔMBA có

góc MNC=góc MBA

góc M chung

=>ΔMNC đồng dạng vơi ΔMBA

=>MN/MB=MC/MA

=>MN*MA=MB*MC

Xét ΔMBF và ΔMEC có

góc MBF=góc MEC

góc M chung

=>ΔMBF đồng dạg với ΔMEC

=>MB/ME=MF/MC

=>MB*MC=ME*MF=MN*MA

=>MF/MA=MN/ME

=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE

=>góc NAE+góc NFE=180 độ

=>ANFE nội tiếp

a: Kẻ tiếp tuyến Ax tại A của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>OA vuông góc FE tại I

góc ABJ=1/2*180=90 độ

góc FBJ+góc FIJ=180 độ

=>FBJI nội tiếp

b: Xét ΔMNC và ΔMBA có

góc MNC=góc MBA

góc M chung

=>ΔMNC đồng dạng vơi ΔMBA

=>MN/MB=MC/MA

=>MN*MA=MB*MC

Xét ΔMBF và ΔMEC có

góc MBF=góc MEC

góc M chung

=>ΔMBF đồng dạg với ΔMEC

=>MB/ME=MF/MC

=>MB*MC=ME*MF=MN*MA

=>MF/MA=MN/ME

=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE

=>góc NAE+góc NFE=180 độ

=>ANFE nội tiếp

17 tháng 3 2021

1, Xét tứ giác AEHF có: \(\widehat{AFH}+\widehat{AEH}=90^o+90^o=180^o\)

Hai góc \(\widehat{AFH}\) và \(\widehat{AEH}\) đối nhau

\(\Rightarrow\) Tứ giác AEHF nội tiếp (dhnb tứ giác nt)

2, Xét tứ giác AEDB có: \(\widehat{AEB}\) = \(\widehat{ADB}\) = 90o 

Hai góc có đỉnh kề nhau cùng nhìn AB

\(\Rightarrow\) Tứ giác AEDB nội tiếp (dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{EBD}=\widehat{EAD}\) (2 góc nt cùng chắn 1 cung)

Xét \(\Delta\)HBD và \(\Delta\)CAD có: \(\widehat{HDB}=\widehat{CDA}=90^o\)

\(\widehat{HBD}=\widehat{CAD}\) (cmt)

\(\Rightarrow\) \(\Delta\)HBD ~ \(\Delta\)CAD (gg)

\(\Rightarrow\) \(\dfrac{HD}{CD}=\dfrac{BD}{AD}\) (tỉ số đồng dạng)

\(\Rightarrow\) DB.DC = DH.DA (đpcm)

Chúc bn học tốt!

Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABD}=\widehat{AKC}\)

Xét (O) có

\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)

\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)

Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)

Xét ΔADB vuông tại D và ΔACK vuông tại C có 

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB\(\sim\)ΔACK(g-g)

27 tháng 4 2023

giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.

20 tháng 10 2021

help meeee!