K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Xét ΔBDC có

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//DK

Xét ΔAEM có

D là trung điểm của AE

DK//EM

Do đó: K là trung điểm của AM

hay KA=KM

15 tháng 8 2016

\(HK=\frac{1}{2}.MN=\frac{1}{4}.AB=3cm\)

24 tháng 10 2017

a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.

b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.

c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)

Tương tự, ta được: EM = (1/2)DC (2)

Từ (1) và (2) Þ DC = 4DI

13 tháng 10 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

13 tháng 11 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔABI có DM//BI

nên DM/BI=AD/AB

Xét ΔACI có EM//IC

nên EM/CI=AE/AC

=>DM/BI=EM/CI

=>DM=EM

=>M là trung điểm của DE

c: AI là phân giác

=>IB/IC=AB/AC=AD/AE

=>IB*AE=IC*AD

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

a) Xét ΔBCD có

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình của ΔBCD(Định nghĩa đường trung bình của tam giác)

Suy ra: ME//CD và \(ME=\dfrac{CD}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

c) Xét ΔAEM có 

D là trung điểm của AE

I là trung điểm của AM

Do đó: DI là đường trung bình của ΔAEM

Suy ra: DI//EM và \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: \(DI=\dfrac{EM}{2}\)(cmt)

nên \(EM=2\cdot DI\)

\(\Leftrightarrow\dfrac{DC}{2}=2\cdot DI\)

\(\Leftrightarrow DC=4\cdot DI\)

\(\Leftrightarrow DC-DI=4DI-DI\)

\(\Leftrightarrow CI=3DI\)