K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Nếu c/m được DM=1/2(BC) => BD=BC => vô lý vì trong tam giác vuông BCD có cạnh huyền BC = cạnh góc vuông BD à? => xem lại đề bài

23 tháng 9 2019

Tham khảo đề bài và bài làm tại link:

Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 9 2019

Em sai đề. Tham khảo đề và bài làm tại link: Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 9 2019

A B C D E M N

a) Xét \(\Delta\)BDC vuông tại D  ( Vì BD là đường cao tam giác ABC )

có: M là trung điểm BC ( giả thiết)

=> DM là đường trung tuyến 

=> \(DM=\frac{1}{2}BC\)(1)

b) Tương tự EM là đường trung tuyến của \(\Delta\)vuông BEC 

=> \(EM=\frac{1}{2}BC\) (2)

Từ (1) ; (2) => DM = EM

=>  \(\Delta\)DME cân tại M

c) \(\Delta\)DME cân tại M ( theo câu b)

có N là trung điểm của DE nên MN là đường trung tuyến của \(\Delta\)DME cân.

=> MN là đường cao. ( Trong tam giác cân đường trung tuyến đồng thời là đường cao , phân giác ,...)

2 tháng 12 2017

A B C E D M N

Xét tam giác BDC: ^BDC=900, Mà trung điểm của BC => DM=BM=CM

Tương tự: EM=BM=CM

=> DM=EM => Tam giác EMD cân tại M.

Ta có: N là trung điểm của DE => MN là đường trung tuyến, cũng là đường cao của tam giác EMD.

=> MN vuông góc DE (đpcm).

2 tháng 12 2017

Cảm ơn bài làm của bạn nhé!

NV
22 tháng 12 2020

1.

a. CN và BM cùng vuông góc DE nên CN//BM

\(\Rightarrow\) BMNC là hình thang vuông tại M và N

b. Theo giả thiết BD vuông góc CA \(\Rightarrow\Delta BDC\) vuông tại D

\(\Rightarrow DO\) là trung tuyến ứng với cạnh huyền BC \(\Rightarrow DO=\dfrac{1}{2}BC\)

Tương tự trong tam giác vuông BEC thì EO là trung tuyến ứng với cạnh huyền

\(\Rightarrow EO=\dfrac{1}{2}BC\Rightarrow DO=EO\Rightarrow\) tam giác cân tại O

c. Tam giác DEO cân tại O, mà P là trung điểm DE \(\Rightarrow OP\) là trung tuyến đồng thời là đường cao

\(\Rightarrow OP\perp DE\) \(\Rightarrow OP//CN//BM\)

Mà O là trung điểm BC \(\Rightarrow OP\) là đường trung bình hình thang BMNC

\(\Rightarrow OP=\dfrac{CN+BM}{2}\)

2. Đặt biểu thức là A

Với \(p=2\) ko thỏa mãn

Với \(p=3\Rightarrow A=71\) là SNT

Với \(p>3\) do p là SNT nên p chỉ có 2 dạng \(p=3k+1\) hoặc \(3k+2\)

- Với \(p=3k+1\Rightarrow p^3\) chia 3 dư 1, \(p^2\) chia 3 dư 1, \(11p=9p+2p\) chia 3 dư 2

\(\Rightarrow A\) chia 3 dư 1+1+2+2=6 chia hết cho 3 (ko là SNT) loại

- Với \(p=3k+2\) tương tự, \(p^3\) chia 3 dư 2, \(p^2\) chia 3 dư 1, \(11p\) chia 3 dư 1

\(\Rightarrow\) A chia 3 dư 2+1+1+2=6 vẫn chia hết cho 3 (loại)

Vậy \(p=3\) là giá trị duy nhất thỏa mãn

22 tháng 12 2020

Em cảm ơn anh nhiều ạ . Anh có thể cho e xin cách làm bài 2 được k ạ

11 tháng 11 2017

Bạn vẽ hình đi mk giải cho nha

11 tháng 11 2017

Mk ko biết vẽ hình trên này

3:

Xét tứ giác AEHF có

góc AEH=góc AFH=góc EAF=90 độ

=>AEHF là hình chữ nhật

AM vuông góc EF

=>góc MAC+góc AFE=90 độ

=>góc MAC+góc AHE=90 độ

=>góc MAC+góc B=90 độ

mà góc MCA+góc B=90 độ

nên góc MAC=góc MCA

=>MA=MC

góc MAC+góc MAB=90 độ

góc MCA+góc MBA=90 độ

mà góc MAC=góc MCA

nên góc MAB=góc MBA

=>MA=MB

=>MB=MC

=>M là trung điểm của BC

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//MN và DE=MN

b:Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)

nên ΔGBC cân tại G

Suy ra: GB=GC

Suy ra: G nằm trên đường trung trực của BC(3)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC