K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 10 2019
Nối A với I :
Ta có : S ( AMI ) = 1/2 S ( BMI ) ( vì đáy AM = 1/2 đáy BM ; chung chiều cao hạ từ I xuống AB )
S ( ANI ) = 1/2 S ( CNI )
Mà S ( CNI ) = S ( BMI ) nên S ( AMI ) = S ( ANI ) = 90 : 2 = 45 cm2
\(\Rightarrow\) S ( AIB ) = 3 x S ( AMI ) = 3 x 45 = 135 cm2
\(\Rightarrow\) S ( ABN ) = S ( AIB ) + S ( AIN ) = 135 + 45 = 180 cm2
\(\Rightarrow\) S ( ABC ) = 3 x S ( ABN ) = 3 x 180 = 540 cm2
a/
Xét tam giác AOM và tam giác AOC có chung đường cao hạ từ O xuống AC
\(\frac{S_{AOM}}{S_{AOC}}=\frac{AM}{AC}=\frac{1}{2}\Rightarrow S_{AOC}=2xS_{AOM}=2x4=8cm^2\)
b/
Xét tam giác AIC và tam giác BIC có chung đường cao hạ từ C xuống AB
\(\frac{S_{AIC}}{S_{BIC}}=\frac{AI}{BI}=\frac{1}{2}\)
Hai tam giác trên lại chung cạnh đáy IC nên
S(AIC) / S(BIC) = đường cao hạ từ A xuống IC / đường cao hạ từ B xuống IC = 1/2
Xét tam giác AOC và tam giác BOC có chung cạnh đáy OC nên
S(AOC) / S(BOC) = đường cao hạ từ A xuống IC / đường cao hạ từ B xuống IC = 1/2
\(\Rightarrow S_{BOC}=2xS_{AOC}=2x8=16cm^2\)
Xét tam giác AOM và tam giác COM có chung đường cao hạ từ O xuống AC nên
\(\frac{S_{AOM}}{S_{COM}}=\frac{AM}{CM}=1\Rightarrow S_{AOM}=S_{COM}=4cm^2\)
\(\Rightarrow S_{BCM}=S_{BOC}+S_{COM}=16+4=20cm^2\)
Xét tam giác ABC và tam giác BCM có chung đường cao hạ từ B xuống AC nên
\(\frac{S_{BCM}}{S_{ABC}}=\frac{CM}{AC}=\frac{1}{2}\Rightarrow S_{ABC}=2xS_{BCM}=2x20=40cm^2\)
c/
Xét tam giác AIC và tam giác ABC có chung đường cao hạ từ C xuống AB nên
\(\frac{S_{AIC}}{S_{ABC}}=\frac{AI}{AB}=\frac{1}{3}\Rightarrow S_{AIC}=\frac{S_{ABC}}{3}=\frac{40}{3}cm^2\)
\(S_{AOI}=S_{AIC}-S_{AOC}=\frac{40}{3}-8=\frac{16}{3}cm^2\)