Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔADC và ΔEDB có
\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)
DC=DB(D là trung điểm của BC)
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
Do đó: ΔADC=ΔEDB(g-c-g)
Hình bạn tự vẽ
a) XÉt \(\Delta AED\)và \(\Delta AEC\)CO:
\(AE\)CHUNG
\(AD=AC\)( GIẢ THIẾT)
\(DE=DC\)( E LÀ TRUNG ĐIỂM CỦA DC)
DO ĐÓ \(\Delta AED=\Delta AEC\)( C.C.C)
VẬY \(\Delta AED=\Delta AEC\)
B) Xét \(\Delta ADC\)có: \(AD=AC\) (giả thiết)
\(\Rightarrow\Delta ADC\)là \(\Delta\)cân tại \(A\)
mà \(E\)là trung điểm của \(DC\)
\(\Rightarrow AE\)là đường trung trực của \(\Delta ADC\)
\(\Rightarrow AE\perp DC\)TẠI \(E\)
VẬY \(AE\perp DC\)
C) THEO CÂU B) \(AE\)LÀ ĐƯỜNG TRUNG TRỰC CỦA \(DC\)
MÀ \(F\in AE\)
\(\Rightarrow F\)CÁCH ĐỀU \(D\)VÀ \(C\)
\(\Rightarrow\widehat{AFD}=\widehat{AFC}\)
VẬY \(\widehat{AFD}=\widehat{AFC}\)
Bài 1:
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
Bài 2:
a: Xét ΔDAC và ΔBCA có
DA=BC
AC chung
DC=BA
Do đó: ΔDAC=ΔBCA
=>\(\widehat{DCA}=\widehat{BAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: ΔDAC=ΔBCA
=>\(\widehat{DAC}=\widehat{BCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
AD//BC
AH\(\perp\)BC
Do đó: AD\(\perp\)AH
Bạn tự vẽ hình nhé
a) Xét \(\Delta ABD\)và\(\Delta ACD\)có:
AB = AC ( gt)
\(\widehat{BAD}=\widehat{CAD}\)(gt)
AD chung
\(\Rightarrow\)\(\Delta ABD=\Delta ACD\left(c.g.c\right)\)