Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMC có
ME//AC
ME=AC
Do đó: AEMC là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
mà AB=AC
nên ABKC là hình thoi
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: E đối xứng A qua BC
=>AE vuông góc BC tại trung điểm của AE
=>AE vuông góc BC tại H và H là trung điểm của AE
Xét ΔAED có
H,M lần lượt là trung điểm của AE,AD
=>HM là đường trung bình
=>HM//ED
=>ED vuông góc EA
=>ΔAED vuông tại E
c: Xét ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE cân tại C
=>CA=CE
mà BD=AC(ABDC là hình bình hành)
nên CE=BD
Xét tứ giác BCDE có
BC//DE
nên BCDE là hình thang
Hình thang BCDE có BD=CE
nên BCDE là hình thang cân