K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=2MB=90cm

Xét ΔAMB có MD là phân giác

nên AD/AM=DB/BM

=>AD/30=DB/45

=>AD/2=DB/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)

Do đó: AD=20(cm); DB=30(cm)

b: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

a: BC=2*MB=90cm

Xét ΔMAB có MD là phân giác

nên AD/MA=BD/BM

=>AD/6=BM/9=50/15=10/3

=>AD=10/3*6=20cm; BM=10/3*9=30cm

b: Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AE/EC=AD/DB

=>ED//BC

Xet ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

=>ΔADE đồng dạng với ΔABC

30 tháng 11 2017

Vì DI = IE (cmt) nên MI là đường trung tuyến của tam giác MDE.

ΔMDE vuông (vì MD, ME là tia phân giác của góc kề bù) nên MI = DI = IE

Đặt DI = MI = x, ta có D I B M = A I A M (cmt) nên  x 15 = 10 − x 10

Từ đó x = 6 suy ra DE = 12cm

Đáp án: D

6 tháng 8 2018

Hình bạn tự vẽ nha.

a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\)\(AI=\frac{2}{3}AM\)

 \(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)

\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)

Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)

\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)

b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)

\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)

Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)

c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)

9 tháng 7 2021

lời giải của bạn rất hay !

 

22 tháng 3 2022

giúp mình dc ko :<<<<

22 tháng 3 2022

Đợi mình chút

 

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Vì \(MD\) là tia phân giác của góc \(\widehat {AMB}\) nên \(\frac{{AD}}{{DB}} = \frac{{AM}}{{BM}}\) (1)

Vì \(ME\) là tia phân giác của góc \(\widehat {AMC}\) nên \(\frac{{AE}}{{EC}} = \frac{{AM}}{{MC}}\)(2);

Mà \(M\) là trung điểm của \(BC\) nên \(BM = MC\) (3)

Từ (1); (2); (3) \( \Rightarrow \frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)

Xét tam giác \(ABC\) có: \(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)

Do đó, \(DE//BC\)(Định lí Thales đảo).

Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

26 tháng 3 2022

cứu mình với ạ

26 tháng 3 2022

Cậu tham khảo:

undefined